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Abstract: Medulloblastoma (MB) is a dangerous malignant pediatric brain tumor that could lead
to death. It is considered the most common pediatric cancerous brain tumor. Precise and timely
diagnosis of pediatric MB and its four subtypes (defined by the World Health Organization (WHO)) is
essential to decide the appropriate follow-up plan and suitable treatments to prevent its progression
and reduce mortality rates. Histopathology is the gold standard modality for the diagnosis of
MB and its subtypes, but manual diagnosis via a pathologist is very complicated, needs excessive
time, and is subjective to the pathologists’ expertise and skills, which may lead to variability in the
diagnosis or misdiagnosis. The main purpose of the paper is to propose a time-efficient and reliable
computer-aided diagnosis (CADx), namely MB-AI-His, for the automatic diagnosis of pediatric
MB and its subtypes from histopathological images. The main challenge in this work is the lack of
datasets available for the diagnosis of pediatric MB and its four subtypes and the limited related
work. Related studies are based on either textural analysis or deep learning (DL) feature extraction
methods. These studies used individual features to perform the classification task. However, MB-
AI-His combines the benefits of DL techniques and textural analysis feature extraction methods
through a cascaded manner. First, it uses three DL convolutional neural networks (CNNs), including
DenseNet-201, MobileNet, and ResNet-50 CNNs to extract spatial DL features. Next, it extracts
time-frequency features from the spatial DL features based on the discrete wavelet transform (DWT),
which is a textural analysis method. Finally, MB-AI-His fuses the three spatial-time-frequency
features generated from the three CNNs and DWT using the discrete cosine transform (DCT) and
principal component analysis (PCA) to produce a time-efficient CADx system. MB-AI-His merges the
privileges of different CNN architectures. MB-AI-His has a binary classification level for classifying
among normal and abnormal MB images, and a multi-classification level to classify among the four
subtypes of MB. The results of MB-AI-His show that it is accurate and reliable for both the binary and
multi-class classification levels. It is also a time-efficient system as both the PCA and DCT methods
have efficiently reduced the training execution time. The performance of MB-AI-His is compared
with related CADx systems, and the comparison verified the powerfulness of MB-AI-His and its
outperforming results. Therefore, it can support pathologists in the accurate and reliable diagnosis
of MB and its subtypes from histopathological images. It can also reduce the time and cost of the
diagnosis procedure which will correspondingly lead to lower death rates.

Keywords: pediatric medulloblastoma (MB) diagnosis; histopathology; computer-aided diagnosis
(CADx); convolutional neural network (CNN); discrete wavelet transform (DWT); discrete cosine
transform (DCT); principal component analysis (PCA)

1. Introduction

Brain tumors are very common pediatric solid tumors accounting for around 25% of
all types of pediatric cancers [1]. Among children below 15 years old, the brain tumor is the
second major reason for mortality after severe lymphoblastic leukemia [2]. It is stated that
more than 1500 kids in America and 1859 kids in Britain were diagnosed annually with
cancer during 2014 to 2016; 15% of them consequently died [3]. About 55–70% are pediatric
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brain tumors. Including them, around 15% of brain tumors are medulloblastoma (MB). MB
is the foremost common pediatric malignant brain tumor [4]. MB is also the main reason
for cancer-related illness and death among children [5,6]. It develops inside the cerebellum
on the posterior part of the brain and rapidly grows. Because MB is a pediatric brain tumor,
there is a necessity to attain a serious examination, so as not to result in an over or under
treatment, which in both cases leads to an excessive death rate [7]. It has several subtypes.
As stated in [8], the accurate diagnosis of pediatric subtype has enhanced the 2 and 5 year
survival rates. Late diagnosis of MB and its subtypes may cause acute side effects. This
is because the cerebellum controls all body motion and synchronization. Therefore, the
accurate diagnosis of pediatric MB and its subtypes is essential to reduce mortality rates
and select the appropriate treatment plan that prevents its progression.

Magnetic Resonance Imaging (MRI) is the common scanning modality utilized to scan
and diagnose children’s brain tumors [9]. However, there are some difficulties that face
radiologists to diagnose pediatric MB subtypes using MRI [1]. This is because various brain
tumor categories do not constantly reveal obvious variations in the visible manifestation
of the MRI scan [10]. Moreover, employing just traditional MRI to deliver a diagnosis
could possibly lead to an inaccurate decision [11]. Therefore, another imaging modality
is preferred to diagnose MB and its subtypes [1]. Currently, the classification of pediatric
MB and its subtypes is accomplished by a histopathological imaging, which is the gold
standard to attain accurate diagnosis of MB and its subtypes [11,12]. The treatment process
relies on the MB subtype classification, as the level of aggressiveness varies from subtype to
another. Therefore, the correct classification of the MB subtype is of great importance [13].
However, limited works have studied the classification of MB subtypes using image
processing and machine learning techniques [12]. Diagnosing MB is useful to define
the destructive MB subtypes that need severe and quick treatments [14]. There are four
subtypes of MB that depend on the histological visual appearance according to the World
Health Organization (WHO) classification [15]. These subtypes compromise the classic,
desmoplastic MB with extensive nodularity and large cell/anaplastic MB. Discriminating
among these subtypes of MB is hard mostly because of the complication among the patterns
observed in the histopathology scans as well as the cell shape, association, size, and the
alignment inconsistency for the distinct malignant classes of the tumor [16]. Conventional
methods for the diagnosis of MB and its subtype depend on the recognition of useful,
significant, and discriminating features of the visible structural patterns located in the
histopathological images. However, unfortunately, these methods generally do not succeed
at observing the mixture of complicated patterns that exist in the histopathological images
which are very similar for the four MB subtypes that makes the classification process a
challenging task [17]. Moreover, the pathological analysis is complex, time-consuming, and
is subjective to the pathologist’s knowledge and experience [18]. Professional pathologists
might deliver different decisions regarding the MB subtype [19,20]. Additionally, the
limited availability of pathologists is a serious hurdle in the analysis of histopathological
images. This deficiency occurs mostly in the developed and developing countries. The
lack of pathologists rises the burden on the present pathologists [21]. This emphasizes the
necessity for powerful automatic approaches or mixtures of approaches to overcome the
challenging tasks that appear during the manual analysis of histopathological images. Such
automatic techniques will be able to lower the load made by the pathologist in classifying
MB and its subtypes, and further support them in achieving precise MB diagnosis [18].

In the last decade, there have been huge advancements in artificial intelligence (AI)
methods comprising machine learning (ML) and deep learning (DL) approaches. Computer-
aided diagnosis (CADx) schemes based on ML and DL approaches have led to significant
enhancements in the automatic diagnosis of pediatric MB and its subtypes. CADx could
assist pathologists in the automatic analysis of histopathological images, thus decreasing
the cost of diagnosis [22]. Several CADx systems have been proposed to solve related
medical problems [23–27]. However, less work has been made to classify the childhood MB
and its subtypes from histopathological images using ML and DL techniques, due to the
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lack of data availability. The main aim of this paper is to propose a reliable and time-efficient
system called MB-AI-His for the automatic diagnosis of pediatric MB and its subtypes from
histopathological images. MB-AI-His is a mixture of deep learning and machine learning
methods. It is fully automated to avoid manual diagnosis made by pathologists, help
them in achieving an accurate diagnosis, and identify the four subtypes of childhood MB.
MB-AI-His overcomes the limitations and drawbacks of the related studies. First, it is a
reliable system capable of classifying the four subtypes of childhood MB with high accuracy
instead of only one subtype as obtained by several related works. Second, it merges the
advantages of both deep learning and textural analysis through a cascaded manner. This is
done by initially extracting spatial DL features from three convolutional neural network
(CNN) approaches, then using the discrete wavelet transform (DWT) method to further
extract textural features from the DL features which form spatial-time-frequency features.
Third, it combines the spatial-time-frequency features extracted from the three CNNs after
passing through the DWT to benefit from each CNN architecture. Fourth, it fuses the three
spatial-time-frequency features using the discrete cosine transform (DCT) and principal
component analysis (PCA) methods to reduce the huge dimension of features and the
training execution time. Note that one of the main challenges in classifying the subtypes of
the pediatric MB is the availability of the dataset.

The novelty of the paper can be summarized into the following contributions:

i. Few related studies were conducted for classifying the four subtypes of pediatric
MB. Most of them did not achieve very high performance, so they are not reliable.
In this paper, a reliable CADx is constructed, called MB-AI-His, that can classify the
four subtypes of pediatric MB with high accuracy.

ii. Most previous studies depend only on textural analysis-based features or deep
learning features that were used individually to perform classification; however,
MB-AI-His merges the benefits of the DL and textural analysis feature extraction
methods through a cascaded manner.

iii. The cascaded manner initially uses three deep CNNs to extract spatial features. Then,
these spatial features enter a DWT which is a textural analysis-based method that
generates time-frequency features ending up by generating spatial-time-frequency
features.

iv. Developing spatial-time-frequency features instead of using only spatial features as
accomplished by most of the related studies.

v. Almost all the related studies used an individual feature set to construct their
classification model; however, MB-AI-His fuses the three spatial-time-frequency
features generated from the three CNNs and DWT.

vi. The fusion is done through DCT and PCA to generate a time-efficient CADx system
and lower the feature space dimension as well as the classification training time
which was one of the limitations in the previous related work.

The paper is organized as follows. Section 2 describes the related studies with their
limitations. Section 3 introduces the dataset used as well as the DL and ML approaches and
the proposed MB-AI-His. Section 4 presents the parameters’ settings and the performance
metrics used to evaluate the results of MB-AI-His. The results of the proposed MB-AI-His
are shown in Section 5. Section 6 discusses the main results of MB-AI-His, and finally,
Section 7 concludes the paper.

2. Related Work

This section illustrates the methods and results achieved using related studies. The
related studies based on histopathological images along with their limitation are shown in
Table 1. The techniques [12,16,28–30] stated in Table 1 suffer from several limitations. First,
most of them are based only on handcrafted feature extraction approaches which have
some number of parameters that should be manually adjusted, which involves additional
time for training the classification model. Moreover, some of them depend on only textural-
based feature extractors which might not succeed to explain the feature patterns existing
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in the training instances that the data-driven method is capable to find [28]. Additionally,
they used only individual types of features to construct their models. They were also all
based on a very small dataset containing only 10 images. Finally, they were all constructed
to distinguish between only anaplastic and non-anaplastic pediatric MB, which is only one
subclass of childhood MB (binary classification problem). The drawbacks of the methods
in [7] and [31] are using conventional handcrafted features based on either textural analysis,
color, or morphological operations to train the support vector machine SVM classifier
to classify the four subtypes of MB. Moreover, the CADx proposed in [13] studied the
fusion of only textural features to train their model and perform the classification task.
The authors in [32] used only DL features to train an SVM classifier to classify the four
classes of childhood MB. They used only two types of DL methods individually for the
classification task, each of them is of huge dimension. They did not combine several DL
features extracted from several CNNs to benefit from each CNN architecture. The authors
in [32] only used two pre-trained CNNs individually. Moreover, the classification time
executed using these CNNs is high. Besides, none of the above methods combined DL
features with textural features. Finally, most of them did not achieve a very high accuracy,
which means they are not reliable.

Table 1. A list of related studies that used histopathological images along with their limitations.

Article Segmentation Features Classifier Accuracy Medulloblastoma (MB)
Class Limitations

[16] N/A

• TICA 1

• Wavelet analysis
• 2-layered

convolutional neural
networks (CNN)

Soft-
max 99.7% Anaplastic and

Non- anaplastic

• Use only one type of feature extraction
either textural features or spatial features
extracted from CNN.

• Very small dataset (10 images only)

[28] N/A • TICA Soft-
max 97% Anaplastic and

Non- anaplastic
• Depends on only texture-based feature

extractors.
• Very small dataset (10 images only)

[12] N/A
• Haar Wavelet

Transform k-NN 2 87% Anaplastic and
Non- anaplastic

• Use only one type of feature extraction
(textural features) to build their
computer-aided diagnosis (CADx)

• Very small dataset (10 images only)

[29] N/A

• Haar
• Haralick
• Laws textural

features

RF 3 91% Anaplastic and
Non- anaplastic

• Use an only individual type of feature
extraction to build their CADx

• Very small dataset (6 images only)

[30] N/A
• 16-layered CNN
• 2-Layered CNN softmax 76.6%

89.8%
Anaplastic and
Non- anaplastic

• Depends on only spatial deep
learning-based feature extractors.

• Very small dataset (10 images only)

[7] K-means
clustering

• HOG 4

• GLCM 5

• GLRM 6

• Tamura
• Color Feature
• LBP 7

• Morphological
• Principal component

analysis (PCA)

SVM 84.9%

• Classic
• Desmoplastic
• Nodular
• Large Cell

(anaplastic)

• Depends only on conventional
handcrafted features.

• They used only individual feature set to
perform the classification task.

[31] K-means
clustering

• HOG
• GLCM
• rGLRM
• Tamura
• Color Feature
• LBP
• Morphological
• MANOVA 8

SVM 65.2%

• Classic
• Desmoplastic
• Nodular
• Large Cell

(anaplastic)

• Depends only on conventional
handcrafted features.

• Used only individual feature set to
perform the classification task.

[13] K-means
clustering

Different combinations of
fused features including:
• HOG
• GLCM
• GLRM
• Tamura
• LBP
• PCA

SVM 96.7%

• Classic
• Desmoplastic
• Nodular
• Large Cell

(anaplastic)

• Depends only on conventional
handcrafted features.
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Table 1. Cont.

Article Segmentation Features Classifier Accuracy Medulloblastoma (MB)
Class Limitations

[32] N/A

• AlexNet

Softmax

79.3% • Classic
• Desmoplastic
• Nodular
• Large Cell

(anaplastic)

• Depends only on spatial deep learning
(DL) features.

• VGG-16 10 65.4%

[32] N/A

• AlexNet DL features

SVM

93.21% • Classic
• Desmoplastic
• Nodular
• Large Cell

(anaplastic)

• Depends only on spatial DL features.
• Use Individual DL for the classification

task.• VGG-16 DL features 93.38%

1 TICA: Topographic independent component analysis, 2 k-NN: k-nearest neighbors,3 RF: Random Forest, 4 HOG: Histogram of oriented
gradients, 5 GLCM: grey level covariance matrix, 6 GLRM: grey level run matrix, 7 LBP: local binary pattern, 8 MANOVA: Multivariate
analysis of variance, and 10 VGG: Visual Geometry Group.

3. Materials and Methods
3.1. Childhood MB Dataset Description

The Guwahati Medical College and Hospital GMCH and Guwahati Neurological Re-
search Centre (GNRC) were both employed as collaborating medical institutes in collecting
childhood MB dataset. The dataset used in constructing MB-AI-His was collected from
only patients experiencing childhood MB. All these patients are of age lower than 15 years.
Few blocks of the data were generated from children under 15 years of age who were
identified with childhood MB at the neurosurgery department of GMCH. The samples were
gathered from the tissue blocks and utilized as an element of the post-operative process.
Blocks of tissues were then stained using hematoxylin and eosin (HE) at Ayursundra Pvt
where pathological assistance was delivered by a local medical specialist. The dataset was
collected from 15 children from whom the samples were gathered. Afterward, the slide’s
scans and the region of interest were observed for ground truth by a qualified pathologist
at the Pathological Department of GNRC. Next, pictures of the region of interest where
microscopic images were taken at magnification 10x were saved in JPEG format. These
images were captured using a Leica 1CC50 HD microscope. The dataset contains images
for the four subtypes of MB tumors. The total number of images is 204. The number of
images for the classic, desmoplastic, large cell, and nodule MB subtypes is 59, 42, 30, and
23, respectively. Whereas the number of normal images that do not contain signs of MB is
50. Details of the dataset can be found in [33]. The dataset can be found at [34]. Samples of
normal and MB subtypes’ images available in the dataset are shown in Figure 1 which are
(a) normal, (b) classic, (c) desmoplastic, (d) large cell, and (e) nodular.
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Figure 1. Samples of the childhood pediatric MB images: (a) normal, (b) classic, (c) desmoplastic, (d) large cell, (e) nodular.

3.2. Deep Learning Approaches

Deep learning (DL) approaches are a new branch of machine learning techniques that
arose as a solution to overcome the limitations of the traditional artificial neural network
(ANN) when analyzing images. The traditional ANN does not take into account the benefit
of the underlying spatial information located in images [35–37]. There are several architec-
tures for DL. Among them is the convolutional neural network (CNN), which is the most
used architecture for medical problems, especially dealing with medical images [38–40].
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A CNN contains a huge number of layers; thus, it is denoted deep networks. It consists
of convolutional layers, non-linear activation layers, pooling layers, and fully connected
(FC) layers. Instead of supplying the whole image to every neuron, the convolutional layer
of the CNN convolves a region of the image (equivalent to the size of the filter) with a
filter of compact size. This filter passes through the whole regions of the image in the
previous layer, one region (equivalent to the size of the filter) at a time. The output of the
filter utilized in the previous layer is known as a feature map. Every location leads to the
activation of the neuron and the outputs are stored in the feature map [41]. Three state-of-
the-art CNN architectures are used in this paper including ResNet-50, DenseNet-201, and
MobileNet CNNs.

3.2.1. ResNet-50

The ResNet is considered to be one of the powerful and latest CNNs. It achieved
the first position in the ImageNet Large Scale Visual Recognition Challenge ILSVRC and
Common Objects in Context COCO 2015 competition [42]. ResNet can efficiently converge
with acceptable computation cost even with increasing the number of layers, which is not
the case with AlextNet and Inception CNNs [40,43]. This is because He et al. [42] delivered
a new structure that depends on deep residual learning. This structure includes cutoffs
(called residuals) inside the layers of a traditional CNN to cross over some convolution
layers at a time. Such residuals boost the performance of the CNN. Moreover, these
residuals accelerate and smoothen the convergence procedure of the CNN despite the huge
amount of deep convolution layers [26]. ResNet-50 CNN is employed in the paper which
is 50 layers deep. The architecture of ResNet-50 is shown in Figure 2. The dimensions of
the various layers of ResNet 50 CNN are shown in Table 2.

Table 2. The dimensions of the various layers of ResNet 50 CNN.

Layer Label Input Layer Dimension Output Dimension

Input Layer 224 × 224 × 3

Conv1 112 × 112 × 64

Filter size = 7 × 7
Number of filters = 64

Stride = 2
Padding = 3

pool1 56 × 56 × 64 Pooling size = 3 × 3
Stride = 2

conv2_x 56 × 56 × 64
 1 × 1 64

3 × 3 64
1 × 1 256

×3

conv3_x 28 × 28 × 128
 1 × 1 128

3 × 3 128
1 × 1 512

×4

conv4_x 14 × 14 × 256
 1 × 1 256

3 × 3 256
1 × 1 1024

×6

conv5_x 7 × 7 × 512
 1 × 1 512

3 × 3 512
1 × 1 2048

×3

Average pooling
Pool size = 7 × 7

Stride = 7

1 × 1

Fully connected (FC) Layer 1000
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Figure 2. The structural design of ResNet 50 CNN.

3.2.2. DenseNet-201

Recent studies have shown that deep CNNs could be substantially deeper, more
precise, and have efficient training ability if constructed with smaller links among layers
close to input and output. For this reason, Huang et al. [44] in 2017 introduced a new CNN
architecture based on the previous short connections called Dense Convolutional Network
(DenseNet). This network joins every single layer to all other layers in a feed-forward
process. Whereas traditional CNN with Z layers have Z links, one within each layer and its
subsequent layer, DensNet consists of Z(Z+1)/2 successive links. For every single layer,
the feature maps of the whole preceding layers are employed as inputs, whereas its feature
maps are employed as inputs into the entire succeeding layers. This network benefits
from its great capability to decrease the vanishing-gradient problem, strengthen feature
distribution, enhance feature recovers, and significantly lower the number of parameters.
DenseNet-201 is employed in this study, which is 201 layers deep. The architecture of
DenseNet-201 is shown in Figure 3. The dimensions of the various layers of DenseNet-201
CNN are displayed in Table 3.

Diagnostics 2021, 11, x FOR PEER REVIEW 8 of 27 
 

 

 

Figure 3. The architecture of DenseNet-201 CNN. 

Table 3. The dimensions of the various layers of DenseNet-201 CNN. 

Layer Label Input Layer Dimension Output Dimension 

Input Layer 224 × 224 × 3 

Convolution 112 × 112  

Filter size = 7 × 7 

Stride = 2 

Padding = 3 

pooling 56 × 56  
Maximum Pooling = 3 × 3  

Stride = 2 

Dense Block 1 56 × 56  [
1 ×     1
3 ×     3

] × 6 

Transition Layer 1 
56 × 56 1 × 1 convolution 

28 × 28 2 × 2 average pooling, stride =2 

Dense Block 2 28 × 28 [
1 ×     1
3 ×     3

] × 12 

Transition Layer 2 
28 × 28 1 × 1 convolution 

14 × 14 2 × 2 average pooling, stride =2 

Dense Block 3 14 × 14 [
1 ×     1
3 ×     3

] × 48 

Transition Layer 3 
14 × 14 1 × 1 convolution 

7 × 7 2 × 2 average pooling, stride =2 

Dense Block 4 7 × 7  [
1 ×     1
3 ×     3

] × 32 

Pooling 

Average Pooling= 7 × 7 

Stride = 7 

1 × 1  

FC Layer 1000 

  

Figure 3. The architecture of DenseNet-201 CNN.



Diagnostics 2021, 11, 359 8 of 26

Table 3. The dimensions of the various layers of DenseNet-201 CNN.

Layer Label Input Layer Dimension Output Dimension

Input Layer 224 × 224 × 3

Convolution 112 × 112
Filter size = 7 × 7

Stride = 2
Padding = 3

pooling 56 × 56 Maximum Pooling = 3 × 3
Stride = 2

Dense Block 1 56 × 56
[

1 × 1
3 × 3

]
× 6

Transition Layer 1 56 × 56 1 × 1 convolution

28 × 28 2 × 2 average pooling, stride =2

Dense Block 2 28 × 28
[

1 × 1
3 × 3

]
× 12

Transition Layer 2 28 × 28 1 × 1 convolution

14 × 14 2 × 2 average pooling, stride =2

Dense Block 3 14 × 14
[

1 × 1
3 × 3

]
× 48

Transition Layer 3 14 × 14 1 × 1 convolution

7 × 7 2 × 2 average pooling, stride =2

Dense Block 4 7 × 7
[

1 × 1
3 × 3

]
× 32

Pooling
Average Pooling= 7 × 7

Stride = 7

1 × 1

FC Layer 1000

3.2.3. MobileNet

To benefit from the powerful capability of CNN while making it more usable, practical,
and time-efficient, a lightweight CNN called MobileNet was proposed [45]. It was created
to enhance the instantaneous performance of CNN under hardware restrictions. MobileNet
is capable of lowering the amount of parameters devoid of surrendering accuracy. It only
requires 1/33 of the parameters needed for VGG-16 CNN to attain similar accuracy using
1000 images of ImageNet. It consists of point-wise layers (pw) and depth-wise layers
(dw). The latter are convolutional layers of size 3 × 3 kernels, whereas the former are
convolutional layers of size 1 × 1 kernels. These layers are handled using the activation
function rectified linear unit and the batch normalization algorithm [46]. It contains 19 deep
layers. Figure 4 shows the structure of the pointwise and depthwise convolution layers,
where Z × Z is the size of the feature map, N is the input channel, M is the output channel,
and Y × Y is the kernel size for the depthwise convolution layer. Table 4 shows the structure
of MobileNet CNN.
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Figure 4. The architecture of MobileNet CNN: (a) pointwise convolution layer, (b) depthwise (dw) convolution layer.

Table 4. The general structure of MobileNet CNN.

Layer Label Input Layer Dimension Filter and Stride Size

Convolution/S2 224 × 224 × 3 Filter size = 3 × 3 × 3 × 32
Stride = 2

Convolution/dw8/S1 112 × 112 × 32 Filter size = 3 × 3 × 32 dw
Stride = 1

Convolution/S1 112 × 112 × 32 Filter size 1 × 1 × 32 ×64
Stride = 1

Convolution/dw/S2 112 × 112 × 64 Filter size = 3 × 3 × 64 dw
Stride = 2

Convolution/S1 56 × 56 × 64 Filter size 1 × 1 × 64 × 128
Stride = 1

Convolution/dw/S1 56 × 56 × 128 Filter size = 3 × 3 × 128 dw
Stride = 2

Convolution/S1 56 × 56 × 128 Filter size 1 × 1 × 128 × 128
Stride = 1

Convolution/dw/S2 56 × 56 × 128 Filter size = 3 × 3 × 128 dw
Stride = 2

Convolution/S1 28 × 28 × 128 Filter size 1 × 1 × 128 × 256
Stride = 1

Convolution/dw/S1 28 × 28 × 256 Filter size = 3 × 3 × 256 dw
Stride = 1

Convolution/S1 28 × 28 × 256 Filter size 1 × 1 × 256 × 256
Stride = 1

Convolution/dw/S2 56 × 56 × 128 Filter size = 3 × 3 × 256 dw
Stride = 2

Convolution/S1 14 × 14 × 256 Filter size 1 × 1 × 256 × 512
Stride = 1

5 × Convolution dw/S1
5 × Convolution S1

14 × 14 × 512
14 × 14 × 512

Filter size = 3 × 3 × 512 dw
Filter size 1 × 1 × 512 × 512

Stride = 1

Convolution dw/S2 14 × 14 × 512 Filter size = 3 × 3 × 512 dw
Stride 2

Convolution/S1 7 × 7 × 512 Filter size 1 × 1 × 512 × 512
Stride = 1

Convolution dw/S2 7 × 7 × 1024 Filter size = 3 × 3 × 1024 dw
Stride 2

Convolution/S1 7 × 7 × 1024 Filter size 1 × 1 × 1024 × 1024
Stride = 1

Pooling
Average Pooling= 7 × 7

Stride = 1

1 × 1 × 1024

FC Layer 1 ×1 × 1000

dw stands for depthwise.
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3.3. Proposed MB-AI-His

MB-AI-His perform the automatic diagnosis of pediatric MB and its subtypes from
the histopathological images in two levels. The first level classifies the images into normal
and abnormal (binary classification level), the second level classifies the abnormal images
containing MB tumor into the four subtypes of childhood MB tumor (multi-classification
level). MB-AI-His consists of five stages which are image preprocessing, spatial feature ex-
traction, time-frequency feature extraction, feature fusion and reduction, and classification
stages. In the image preprocessing stage, images are resized and augmented. In the spatial
feature extraction stage, spatial features are extracted from three deep learning CNNs. In
the time-frequency feature extraction stage, time-frequency features are extracted using the
DWT method. In the feature fusion and reduction stage, the feature sets extracted in the
previous stage are fused using DCT and PCA feature reduction techniques. Figure 5 shows
a block diagram of the proposed MB-AI-His.

Diagnostics 2021, 11, x FOR PEER REVIEW 11 of 27 
 

 

 

Figure 5. A block diagram of the proposed MB-AI-His. 

3.3.1. Image Pre-processing  

In this stage, for the first level of the proposed CADx, 50 images are selected at ran-

dom from the four subtypes of childhood MB. This step is made to balance the normal 

and abnormal classes to 50 images for the binary classification task. Next, for both levels 

of the proposed MB-AI-His, images are resized to 224 × 224 × 3 to fit the size of the input 

layer of each CNN. Afterward, these images are augmented. This augmentation step is 

necessary to elevate the number of images of a dataset to prevent the classification model 

from overfitting [40,47]. The augmentation methods employed in MB-AI-His to generate 

new microscopic images from the training images are flipping in x and y directions, trans-

lation (−30,30), scaling (0.9,1.1), and shearing (0,45) in x and y directions. 

3.3.2. Spatial Feature Extraction 

Three deep pre-trained CNNs are utilized with transfer learning. Transfer learning 

is the capacity to attain matches among distinct data or information to facilitate the train-

ing progression of another classification task that has similar mutual elements. This means 

that the pre-trained CNN can understand representations from large data like ImageNet, 

and then utilize these demonstrations in other areas having the equivalent classification 

problem [37]. It is commonly used in the medical field, as finding medical datasets of 

massive size and mostly labeled as ImageNet dataset is a challenge [35,38]. Transfer learn-

ing is also done to allow the CNN to be used as a feature extractor. In this stage, after 

modifying the FC layers of the three CNNs to be equivalent to the number of classes of 

the childhood MB dataset (2 in case of binary level and 4 for multiclass level) instead of 

Figure 5. A block diagram of the proposed MB-AI-His.

3.3.1. Image Pre-Processing

In this stage, for the first level of the proposed CADx, 50 images are selected at random
from the four subtypes of childhood MB. This step is made to balance the normal and
abnormal classes to 50 images for the binary classification task. Next, for both levels of the
proposed MB-AI-His, images are resized to 224 × 224 × 3 to fit the size of the input layer of
each CNN. Afterward, these images are augmented. This augmentation step is necessary
to elevate the number of images of a dataset to prevent the classification model from
overfitting [40,47]. The augmentation methods employed in MB-AI-His to generate new



Diagnostics 2021, 11, 359 11 of 26

microscopic images from the training images are flipping in x and y directions, translation
(−30,30), scaling (0.9,1.1), and shearing (0,45) in x and y directions.

3.3.2. Spatial Feature Extraction

Three deep pre-trained CNNs are utilized with transfer learning. Transfer learning is
the capacity to attain matches among distinct data or information to facilitate the training
progression of another classification task that has similar mutual elements. This means
that the pre-trained CNN can understand representations from large data like ImageNet,
and then utilize these demonstrations in other areas having the equivalent classification
problem [37]. It is commonly used in the medical field, as finding medical datasets of
massive size and mostly labeled as ImageNet dataset is a challenge [35,38]. Transfer
learning is also done to allow the CNN to be used as a feature extractor. In this stage,
after modifying the FC layers of the three CNNs to be equivalent to the number of classes
of the childhood MB dataset (2 in case of binary level and 4 for multiclass level) instead
of the 1000 class of ImageNet, spatial features are extracted using three deep pre-trained
CNNs including ResNet-50, DenseNet-201, and MobileNet CNNs. These features are
taken out from the “global average pooling 2D layer” of ResNet-50, DenseNet-201, and
MobileNet CNNs. The dimensions of these spatial deep features are 2048, 1280, and 1920
for ResNet-50, MobileNet, and Dense-Net-201 CNNs respectively as shown in Table 5.

Table 5. The number of layers and output size of each CNN.

CNN Structure Number of Layers Size of Output (Features)

ResNet-50 50 2048

MobileNet 19 1280

DenseNet-201 201 1920

3.3.3. Time-Frequency Feature Extraction

In this stage, time-frequency features are extracted using the discrete wavelet trans-
form (DWT) method. The DWT is a textural analysis based-method that is commonly used
in the medical field [48–50]. It offers time-frequencies description by decomposing data
via a set of perpendicular basis functions. The DWT consists of a group of transforms;
everyone has a distinct class of wavelet basis functions. To analyze a 1-D data, a 1-D DWT
is employed, which convolve low pass and high pass filters with the input data. Next, a
dyadic decimation process is executed which is a down-sampling procedure usually made
to reduce the aliasing distortion. Once the 1-D DWT is operated to the 1-D input data,
two clusters of coefficients are produced which are the approximation coefficients CA1,
and detail coefficients CD1 [48]. This process can be repeated for the approximation coeffi-
cients CA1 to attain the second level of decomposition, and again, two sets of coefficients
will be created; the second level approximation coefficients CA2, and detail coefficients
CD2. This process can be further performed to produce multi-decomposition levels of
DWT. In this stage, one level of DWT is performed for each spatial feature extracted from
each CNN of the previous stage. Meyer wavelet (dmey) is utilized as a wavelet basis
function. CD1 corresponds to the detailed coefficients of the first level of DWT. These
details coefficients are produced when passing the image through a high pass filter [51]. In
medical images, the details of the images that help in the diagnosis are found in the high
frequencies [52–54]. Therefore, only CD1 coefficients are chosen in this step, as they contain
most of the information available in the data, and also to reduce the huge dimension of the
features extracted in the earlier stage. Finally, spatial-time-frequency feature sets will be
generated at this stage having dimensions of 1074, 1010, and 690 coefficients after applying
to ResNet-50, Dense-201, and MobileNet spatial DL features. This step is made to benefit
from the advantages of both the DL and DWT textural analysis feature extraction methods.
It is also done to verify that the spatial-time-frequency representations are better than the
spatial representations.
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3.3.4. Feature Fusion and Reduction

To merge the privilege of each of the deep learning techniques used as feature ex-
tractors with textural analysis-based features, a fusion process is made in this stage using
DCT and PCA. These methods are also used to lower the huge dimension of features.
The numbers of DCT coefficients and principal components are chosen using a sequential
forward search strategy.

• DCT is regularly applied to decompose a data into primitive frequency elements. It
reveals the data as a total of cosine functions fluctuating at separate frequencies [55].
Usually, the DCT is applied to the data to get the DCT coefficients which are split
into two groups [56,57]; low frequencies are known as DC coefficients, and high
frequencies are known as AC coefficients. High frequencies illustrate edge, details,
and tiny changes [57], while low frequencies are linked with the brightness situations.
The dimension of the DCT coefficient matrix is identical to the input data [58].

• PCA is a popular feature reduction approach that is commonly employed to compress
the huge dimension of features via operating a covariance analysis among observed
features. The PCA lessens the full number of observed variables to a reduced quantity
of principal components. Such principal components resemble the variance of the
original features. It is generally utilized if the observed features of a dataset are very
correlated. The PCA is appropriate for datasets having very huge dimensions [59].

3.3.5. Classification

The classification procedure of this stage is done with four distinct scenarios. The
initial scenario introduces the utilization of three deep pre-trained networks with transfer
learning including ResNet-50, DenseNet-201, MobileNet CNNs as classifiers (end to end
deep learning process). The second scenario represents the classification using the spatial
features extracted in the spatial feature extraction stage of MB-AI-His. Later, in the third
scenario, the classification process is achieved using the spatial-time-frequency features
extracted in the time-frequency feature extraction stage of MB-AI-His. Finally, in the last
scenario, the spatial-time-frequency features are fused using DCT and PCA and utilized
to perform the classification process. Note that in this scenario the numbers of DCT
coefficients and principal components are chosen using a sequential forward strategy
to reduce the huge dimension of features. Five popular classifiers are used to perform
the classification procedure including linear SVM, cubic SVM, k-nearest neighbors k-NN,
linear discriminant analysis (LDA), and ensemble subspace discriminant (ESD). Figure 6
describes the four scenarios of the proposed MB-AI-His.



Diagnostics 2021, 11, 359 13 of 26

Diagnostics 2021, 11, x FOR PEER REVIEW 13 of 27 
 

 

 PCA is a popular feature reduction approach that is commonly employed to com-

press the huge dimension of features via operating a covariance analysis among ob-

served features. The PCA lessens the full number of observed variables to a reduced 

quantity of principal components. Such principal components resemble the variance 

of the original features. It is generally utilized if the observed features of a dataset are 

very correlated. The PCA is appropriate for datasets having very huge dimensions 

[59]. 

3.3.5. Classification 

The classification procedure of this stage is done with four distinct scenarios. The 

initial scenario introduces the utilization of three deep pre-trained networks with transfer 

learning including ResNet-50, DenseNet-201, MobileNet CNNs as classifiers (end to end 

deep learning process). The second scenario represents the classification using the spatial 

features extracted in the spatial feature extraction stage of MB-AI-His. Later, in the third 

scenario, the classification process is achieved using the spatial-time-frequency features 

extracted in the time-frequency feature extraction stage of MB-AI-His. Finally, in the last 

scenario, the spatial-time-frequency features are fused using DCT and PCA and utilized 

to perform the classification process. Note that in this scenario the numbers of DCT coef-

ficients and principal components are chosen using a sequential forward strategy to re-

duce the huge dimension of features. Five popular classifiers are used to perform the clas-

sification procedure including linear SVM, cubic SVM, k-nearest neighbors k-NN, linear 

discriminant analysis (LDA), and ensemble subspace discriminant (ESD). Figure 6 de-

scribes the four scenarios of the proposed MB-AI-His. 

 

Figure 6. The four scenarios of MB-AI-His. Figure 6. The four scenarios of MB-AI-His.

4. Experimental Setup
4.1. Parameters Setting

Initially, the FC layer of the pre-trained CNNs is modified to the number of classes of
the childhood MB dataset (2 in the case of binary level and 4 for multiclass level) instead
of the 1000 classes of ImageNet. Next, several parameters are altered for the three CNNs
including the number of epochs, initial learning rate, mini-batch size, and validation
frequency. The total amount of epochs and the initial learning rate are 20 and 3 × 10−4

respectively. The mini-batch size and validation frequency are 4 and 17 for binary class
and 26 for multi-class, whereas the other CNN parameters are kept unchanged. The
optimization algorithm used is the Stochastic Gradient Descent with Momentum (SGDM).
To test the capability of the classification models, 5-fold cross-validation is utilized and
repeated 5 times. For the k-NN classifier, the number of k is equal to 1 and the Euclidean
distance is used as a distance metric, and these parameters attained the highest performance.
For the ESD classifier, the number of learners is 30 and the subspace dimension is 1024.

4.2. Evaluation Metrics

To evaluate the performance of the introduced MB-AI-His, different evaluation metrics
are employed. These metrics are the accuracy, the precision, the sensitivity, and the
specificity. They are calculated using the following formulas [26] (1–4).

• True Positives ( TP ): Images that have their true label as positive and whose class is
correctly classified to be positive.

• False Positives ( FP ): Images that have their true label as negative and whose class is
wrongly classified to be positive.
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• True Negatives ( TN ): Images that have their true label as negative and whose class
is precisely classified to be negative.

• False Negatives ( FN ): Images that have their true label as positive and whose class is
wrongly classified to be negative.

The accuracy is a performance metric that shows how the system has properly clas-
sified the childhood MB class and its four subtypes. Thus, it identifies the ability of the
MB-AI-His to perform well.

Accuracy =
TP + TN

TN + FP + FN + TP
(1)

The sensitivity is for a given class, the number of images that are correctly classified
as positive out of the sum of actual positives images.

Sensitivity =
TP

TP + FN
(2)

The specificity is for a given class, the number of images that are correctly classified as
negative out of the sum of actual negative images.

Speci f icity =
TN

TN + FP
(3)

The precision is the proportion of images that are correctly classified as positive to the
total number of images that are truly labeled to be positive.

Precision =
TP

TP + FP
(4)

5. Results

This section illustrates the classification results of the four scenarios of MB-AI-His. As
mentioned before, MB-AI-His performs two levels of classification. The first level classifies
the pediatric MB images as either normal or abnormal (binary classification). The other
level classifies the four subtypes of MB (multi-class classification). Scenario I is an end-to-
end deep learning procedure where ResNet-50, DenseNet-201, and MobileNet CNNs are
used to perform the classification task. Scenario II resembles the extraction of the spatial
features from the three-deep learning CNNs and using them individually to feed five
classifiers including linear SVM, cubic SVM, LDA, and KNN, and ESD classifiers. Scenario
III represents the extraction of the time-frequency features from the spatial DL features to
form three spatial-time-frequency DL features sets. These feature sets are used individually
for the classification process achieved by the same five classifiers. This scenario is executed
to examine if the spatial-time-frequency feature set of a reduced dimension performs better
than the spatial features alone. Scenario IV presents the fusion of the three spatial-time-
frequency DL feature sets using DCT and PCA and using the reduced fused feature set to
perform the classification process. Note that the numbers of DCT coefficients and principal
components are selected using a sequential forward search strategy. This scenario is done
to merge the benefits of the DL techniques and textural analysis feature extraction methods
as well as combining the privilege of each CNN architecture. The scenario examines if this
feature fusion successfully enhances the performance of MB-AI-His. It also investigates if
DCT and PCA can produce a time-efficient CADx system with enhanced accuracy.

5.1. Scenario I Results

The classification performance of the three CNNs used to perform the end-to-end deep
learning procedure for both binary and multi-class classification levels is shown in Table 6.
The table shows that the classification accuracies achieved for the binary classification
level are 100%, 90%, and 100% for the ResNet-50, MobileNet, and DenseNet-201 CNNs,
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respectively, whereas the training execution times are 2 min 5 s, 2 min 13 s, and 9 min for
the ResNet-50, MobileNet, and DenseNet-201 CNNs, respectively. This means that the
ResNet-50 CNN is faster than the DenseNet-201 CNN while achieving the same accuracy.
For the multi-class classification level, the classification accuracies attained are 93.62%,
91.49%, and 89.36% for the ResNet-50, MobileNet, and DenseNet-201 CNNs, respectively.
These accuracies indicate that the ResNet-50 CNN has the highest performance, followed
by the MobileNet and DenseNet-201 CNNs. The training execution times are 4 mins 9 s,
2 mins 5 s, and 14 mins 10 s for the ResNet-50, MobileNet, and DenseNet-201 CNNs,
respectively.

Table 6. The classification testing accuracy (%) and execution training time for the three CNNs for both binary and
multi-class classification.

CNN Structure
Binary Classification Level Multi-Class Classification Level

Accuracy (%) Execution Time Accuracy (%) Execution Time

ResNet-50 100 2 min 5 s 93.62 4 min 9 s

MobileNet 90 2 min 13 s 91.49 2 min 5 s

DenseNet-201 100 9 min 89.36 14 min 10 s

5.2. Scenario II Results

The classification performance of the five classifiers trained with the spatial features
extracted from each of the deep learning CNNs for both binary and multi-class classification
levels is shown in Table 7. Table 7 indicates that for the binary classification level, the
spatial DL features extracted from the ResNet 50 CNN and used to train the cubic SVM
and LDA classifiers, the highest accuracy of 100% is achieved. Whereas, for the spatial DL
features extracted from the DensNet-201 CNN and utilized to train the ESD classifier, a
peak accuracy of 99.2% is attained. For the spatial DL features extracted from the MobileNet
CNN, a maximum accuracy of 99.4% is obtained using the ESD classifier. On the other
hand, for the multi-class classification level, the spatial DL features extracted from the
ResNet 50 CNN and employed as inputs to the LDA classifier, the highest accuracy of
95.74% is acheived. Whereas, for the spatial DL features extracted from the DensNet-50
CNN, the LDA classifier attained a peak accuracy of 97.16%. While, for the spatial DL
features extracted from MobileNet CNN, a maximum accuracy of 94.54% is obtained using
the LDA classifier. These accuracies conclude that the LDA classifier outperforms all other
classifiers and is suitable to classify the four subtypes of pediatric MB.

Table 7. The classification testing accuracy (%) for the five classifiers used in MB-AI-His trained using spatial DL features
extracted from the three CNNs.

Binary Classification Level

Features Linear-SVM Cubic-SVM k-NN Linear Discriminant
Analysis(LDA)

Ensemble Subspace
Discriminant(ESD)

Spatial-ResNet-50 99.6 100 98 100 94.8

Spatial-MobileNet 99.2 99.2 98.2 99 99.4

Spatial-DenseNet-201 98 98 97.6 98 99.2

Multi-Class Classification Level

Spatial-ResNet-50 93.66 94.96 88.18 95.74 93.9

Spatial-MobileNet 91.72 92.2 87.28 94.54 93.4

Spatial-DenseNet-201 94.32 96.26 92.88 97.16 94.84
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5.3. Scenario III Results

The accuracies obtained using the five classifiers learned with the spatial-time-frequency
DL features extracted from each deep learning CNNs for both binary and multi-class classi-
fication levels are shown in Table 8. Table 8 demonstrates that for the binary classification
level, the spatial-time-frequency DL features (1074 features) pulled out from the ResNet-50
CNN and used to build the LDA classifier achieved the highest accuracy of 100%, which
is the same accuracy of the spatial features (2048 features) extracted from ResNet-50 as
shown in Table 7 but with lower dimension. For the spatial-time-frequency DL features
(1010 features) pulled out from the DensNet-50 CNN and utilized to learn the ESD classifier
attained a peak accuracy of 99.2%, which is the same accuracy obtained by the same classi-
fier when trained with the spatial features (1920 features) extracted from the DensNet-201
CNN (shown in Table 7) but with lower dimension. For the spatial-time-frequency DL
features (660 features) extracted from the MobileNet CNN, a maximum accuracy of 98.4%
is obtained using the ESD classifier. On the other hand, in the case of the multi-class clas-
sification level, for the spatial-time-frequency DL features (1074 features) extracted from
the ResNet 50 CNN, the LDA classifier achieved the highest accuracy of 96.66%, which is
higher than the 95.74% (shown in Table 7) obtained with the same classifier trained with
only spatial DL features of higher dimension extracted from the ResNet-50 CNN. Whereas,
for the spatial-time-frequency DL features (1010) extracted from the DensNet-201 CNN,
the LDA classifier attained a peak accuracy of 98.46%, which is better than the 97.16%
(shown in Table 7) obtained with the same classifier when trained with spatial features only
which have a higher dimension of (1920 features). While, for the spatial-time-frequency
DL features (690) extracted from the MobileNet CNN, a maximum accuracy of 98.46%
is obtained using the LDA classifier which is better than the 94.54% (shown in Table 7)
achieved using the same classifier trained with spatial features only of higher dimension
(1280 features) extracted from the MobileNet CNN. These accuracies conclude that the
spatial-time-frequency DL features are better than using the spatial DL features alone, as the
spatial-time-frequency DL features have improved the classification accuracy and reduced
the feature space dimension used in MB-AI-CADx. This makes them more appropriate to
be used for classifying the four subtypes of pediatric MB.

Table 8. The classification testing accuracy (%) for the five classifiers used in MB-AI-His trained using spatial-time-frequency
DL features extracted from the three CNNs.

Binary Classification Level

Features Linear-SVM Cubic-SVM k-NN LDA ESD

Spatial-Time-Frequency-ResNet-50 100 100 98.2 100 99

Spatial-Time-Frequency-MobileNet 98.2 98.4 98.4 98 98.2

Spatial-Time-Frequency-DenseNet-201 98.4 98.2 98.4 98.2 99.2

Multi-Class Classification Level

Spatial-Time-Frequency-ResNet-50 94.32 95.22 89.48 96.66 95.36

Spatial-Time-Frequency-MobileNet 93.76 94.18 90.14 94.32 93.66

Spatial-Time-Frequency-DenseNet-201 95.74 97.16 95.08 98.46 97.42

5.4. Scenario IV Results

This section illustrates the performance of the five classifiers used in MB-AI-His after
the fusion process accomplished using both the PCA and DCT methods. It also describes
the numbers of the DCT coefficients and principal components selected to reduce the
feature space dimension and produce an efficient CADx. Table 9 shows the numbers of
the DCT coefficients and principal components as well as classification accuracy (%) for
the five classifiers used in MB-AI-His after fusion using the PCA and DCT approaches for
the binary classification level. It is obvious from the table that both DCT and PCA have
successfully enhanced the classification accuracy after the fusion process to reach 100% for
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all classifiers, which is higher than those obtained using the five classifiers trained with the
individual spatial-time-frequency DL features shown in Table 8. Moreover, the numbers of
DCT coefficients and principal components attained are 300 and 2 for the DCT and PCA,
respectively, which are much lower than the 2274 features equivalent to the total sum of
features of the spatial-time-frequency DL features extracted from the three CNNs.

Table 9. The numbers of discrete cosine transform (DCT) and principal components, and classification testing accuracy (%)
for the five classifiers used in MB-AI-His after the fusion using PCA and DCT for the binary classification level.

Binary Classification Level

Features No of Features Linear-SVM Cubic-SVM k-NN LDA ESD

DCT 300 100 100 100 100 100

PCA 2 100 100 100 100 100

Figure 7 shows the number of DCT coefficients versus the classification accuracies
attained for the five classifiers of MB-AI-His CADx. It is clear from Figure 7 that for the
multi-class classification level, the highest accuracy of 99.4 % is attained using the LDA
classifier using 1000 coefficients only, which is lower than the 2774 features of the fused
spatial-time-frequency DL features of the three networks. Following the LDA classifier’
performance is the cubic SVM classifier, which attained an accuracy of 98.7% with 1100
DCT coefficients, followed by the k-NN classifier achieving an accuracy of 98.1% with 1200
DCT coefficients, ending by the linear SVM and ensemble (ESD) classifiers which achieved
an accuracy of 97.4% using 800 and 600 coefficients, respectively.
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Figure 7. The number of DCT coefficients versus the classification accuracies attained for the five classifiers of MB-AI-His.

Figure 8 shows the number of principal components versus the classification accu-
racies attained for the five classifiers of MB-AI-His CADx. The figure indicates that the
maximum accuracy of 99.4% is obtained using the LDA and ESD classifiers using only 95
and 65 principal components respectively. This performance is followed by the cubic SVM
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achieving an accuracy of 97.4% using 35 components, the linear SVM obtaining an accuracy
of 96.8% using 35 components, and finally the k-NN attaining an accuracy of 95.5% using
25 components.
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Figure 8. The number of principal components versus the classification accuracies attained for the five classifiers of
MB-AI-His-CADx.

Table 10 shows the performance metrics for the five classifiers used in MB-AI-His after
the fusion process using the PCA and DCT methods for the binary classification level. It is
obvious from the table that the sensitivities, specificities, and precisions are equal to 1 for all
classifiers. This is because MB-AI-His is capable of perfectly differentiating between normal
images and images of childhood MB achieving an accuracy of 100% using the k-NN, linear
and cubic SVM, the LDA, and ESD classifiers. In other words, the combination of features
used in MB-AI-His is capable of discriminating among normal and abnormal images,
enabling the five classifiers to attain 100% accuracy. Figure 9 shows the performance
metrics for the five classifiers used in MB-AI-His CADx after the fusion process using
the PCA approach for the multi-class classification level. The figure indicates that the
maximum sensitivity, specificity, and precision of 0.995, 0.996, and 0.996 are attained using
the LDA classifier. Figure 10 shows the performance metrics for the five classifiers used
in MB-AI-His CADx after the fusion procedure using the DCT method for the multi-class
classification level. The figure indicates that the highest specificity and precision are
attained using the LDA classifier. For medical systems to be reliable, the specificity and
precision should be greater than 0.95, whereas the sensitivity should be greater than 0.8
as indicated in [60,61]. It is clear from Table 10 and Figures 9 and 10 that sensitivities for
the binary and multi-class levels are greater than 0.8. The specificities and precisions are
also greater than 0.95 for both the binary and multi-class classification levels, therefore,
MB-AI-His can be considered as a reliable CADx system that enables the accurate and
reliable diagnosis of pediatric MB and its subtypes.
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Table 10. The performance metrics for the 5 classifiers used in MB-AI-His CADx after the fusion
using PCA and DCT for binary class classification level.

Binary Classification Level

Features Linear-SVM Cubic-SVM k-NN LDA ESD

DCT and PCA
Sensitivity 1 1 1 1 1

Specificity 1 1 1 1 1

Precision 1 1 1 1 1
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Figure 9. The performance metrics for the five classifiers used in MB-AI-His CADx after the fusion using PCA for the
multi-class classification level.
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Figure 10. The performance metrics for the five classifiers used in MB-AI-His CADx after the fusion using DCT for the
multi-class classification level.
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Table 11 shows the training execution time for the five classifiers of MB-AI-His after
the fusion procedure done using the DCT and PCA methods for both the binary and multi-
class classification levels compared to the end-to-end DL process. The table proves that the
fusion process using both the PCA and DCT methods has efficiently reduced the training
execution time for both the binary and multi-class classification levels. This is clear as for
the binary classification level, the lowest training execution times are 1.996 s and 0.858 s for
thePCA and DCT obtained using the LDA and k-NN classifiers respectively, which attained
100% accuracy. These execution times are much lower than those of 125 s, 132 s, and 540 s
obtained using the ResNet-50, MobileNet, and DenseNet-201 CNNs, respectively. On the
other hand, for the multi-class classification level, the training execution times for the LDA
classifiers are 2.79 s and 2 s for the PCA and DCT approaches, where they obtained the
highest accuracy of 99.4%. These execution times are much lower than those of 249 s,125 s,
and 850 s obtained using the ResNet-50, MobileNet, and DenseNet-201 CNNs, respectively.

Table 11. The training execution time (sec) of the three CNN used in MB-AI-His CADx and after the fusion stage of
MB-AI-His CADx for both binary and multi-class classification levels.

Multi-Class Classification Level

DL Method Time Feature Reduction
Method

Linear-SVM
Time

Cubic-SVM
Time k-NN Time LDA Time ESD Time

ResNet-50 249 DCT 2.15 2.03 1.98 2 3.39

MobileNet 125
PCA 2.74 3.17 4.75 2.79 6.23

DenseNet-201 850

Binary-Class Classification Level

DL Method Time Feature Reduction
Method

Linear-SVM
Time

Cubic-SVM
Time k-NN Time LDA Time ESD Time

ResNet-50 125 DCT 0.873 0.886 0.858 0.888 2.54

MobileNet 132
PCA 2.05 2 2.07 1.996 3.314

DenseNet-201 540

6. Discussion

MB is the utmost common childhood malignant brain tumor [4]. It is the main reason
for cancer-related disease and mortality among children [5,6]. Correct identification of
the pediatric MB and its subtypes can lead to an increased 2 and 5 year survival rate as
described in [8]. Since follow-up medication extremely depends on identifying the subtype
of MB, it is essential to achieve an accurate diagnosis [13]. MRI imaging modality produces
insufficient accuracy when classifying the subtypes of MB, whereas the histopathological
investigation of biopsy samples is more capable in accurately diagnosing the childhood
MB and its subtypes [11]. However, the manual analysis of histopathological is very
time consuming, hard, and requires a need for a pathologist with great experience and
skills to assess the very detailed property of the subtypes of MB. The availability of
such pathologists is smaller than the number of patients, especially in the developed
and developing countries. Due to this lack of availability patients travel abroad to make
such analyses for better prospects which is exhausting and expensive [13]. To overcome
these challenges, the automatic diagnosis using CADx systems are recommended. These
systems could assist pathologists in the automatic analysis of histopathological images,
thus decreasing the cost of diagnosis [22].

This paper proposes a CADx system, namely MB-AI-His, to automatically diagnose
the pediatric MB and its subtypes from histopathological images with high accuracy and
efficient time. MB-AI-His consists of five stages: the image preprocessing, subsequent by
spatial feature extraction, time-frequency feature extraction, feature fusion and reduction,
and finally the classification stage. Images are augmented and resized in the preprocess-
ing stage. Next, spatial DL features are extracted from the ResNet-50, MobileNet, and
DenseNet-201 CNNs in the spatial feature extraction stage. Afterward, time-frequency
features are extracted using the DWT approach from the spatial DL features of the previous
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stage to form three spatial-time-frequency DL features. Then, these features are fused using
the DCT and PCA methods to produce a time-efficient system. Finally, the classification
stage is made via four different scenarios. Initially, the pre-trained ResNet-50, MobileNet,
and DenseNet-201 CNNs are trained in an end-to-end classification process which corre-
sponds to the first scenario. Next, spatial features are pulled out and used individually to
train five machine learning classifiers corresponding to the second scenario. Afterward, in
the third scenario, the spatial-time-frequency DL features (which have a lower dimension
than the spatial features) are utilized individually to learn the five classifiers. Finally, in
the last scenario, those features are fused using PCA and DCT which further reduce the
dimension of the features to produce a timely efficient system.

Figure 11 shows a comparison between the highest classification accuracy achieved
for each scenario for the multi-class classification level. The figure verifies that each
scenario enhances the accuracy of MB-AI-His compared to the previous scenario. This
means that using spatial features with ML classifiers (scenario II) is better than the end-
to-end DL process of scenario I. Using spatial-time-frequency DL features (Scenario III)
is also better than using only spatial features. Finally, fusing spatial-time-frequency with
the PCA method (Scenario IV) is superior to using the individual features of the three
former scenarios.
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Figure 11. A comparison between the highest classification accuracy achieved for each scenario for
multi-class classification level.

For the binary classification level, the spatial-time-frequency features extracted from
the MobileNet, DenseNet-201, and ResNet-50 CNNs followed by the DWT method are
reduced using both the PCA and DCT methods. The PCA and DCT feature reduction meth-
ods have attained an accuracy of 100% for the five classifiers used in MB-AI-His, as shown
in Table 9. On the other hand, for the multi-class classification level, the PCA methods has
reduced those spatial-time-frequency features extracted from the three CNNs and the DWT
approach and led to an accuracy of 99.4% using the LDA and ESD classifiers. Thus, the
architecture of MB-AI-His for both the binary and multi-class classification levels can be
concluded as shown in Figure 12. This figure shows that MB-AI-His architecture represents
the fusion of the MobileNet, DenseNet-201, and ResNet-50 CNN features after applying
the DWT method to each spatial feature individually. Afterward, these fused features are
reduced using the PCA method and then classified via the LDA or ESD classifier.
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All experiments were performed using Matlab 2020 a. The processor used is Intel(R)
Core (TM) i7-10750H (10th generation), processor frequency of 2.6 GHz, Hexa-core proces-
sor RAM 16 GB of type DDR4, hard disc capacity of 1.512 TB, and 64-bit operating system.
The video controller is NVIDIA GeForce GTX 1660, graphics card capacity is 6 GB.

To verify the completeness of the introduced MB-AI-His CADx, it is compared with
related CADx based on the same dataset. This comparison is shown in Table 12. The
table proves the competence of MB-AI-His CADx over other related CADx for both the
binary and multi-class classification levels. This is because MB-AI-His CADx achieved
an accuracy of 100%, which is similar to that obtained by [7,31,33], but higher than that
obtained by [32]. The competence of MB-AI-His appears clearly in classifying the four
subtypes of childhood MB, as it attained an accuracy of 99.4%, a sensitivity of 0.995, a
specificity of 0.996, and a precision of 0.996, which are higher than all the related CADx.
MB-AI-His is reliable for both the binary and multi-class classification levels which is
not the case in other studies. Therefore, it can be used to help doctors and pathologists
in achieving an accurate diagnosis, thus reducing the cost of diagnosis and reduce the
misdiagnosis that might cause during the manual diagnosis by a pathologist. It can also
fasten the diagnosis procedure and reduce other challenges regarding manual diagnosis.

Table 12. A comparison between MB-AI-His and related CADx based on the same dataset.

Binary Classification Level

Article Method Testing Accuracy
(%) Sensitivity Specificity Precision

[33] GLCM, GRLN, HOG, Tamura, and LBP
features++SVM 100 1 1 1

[7] Color and Shape features+ PCA+ SVM 100 1 1 1

[31] GLCM, GRLN, HOG, Tamura and LBP
features++MANOVA+SVM 100 1 1 1

[32] AlexNet
VGG-16

98.5
98.12 - - -

[32] AlexNet+SVM
VGG-16+SVM

99.44
99.62 - - -

Proposed
MB-AI-His

DenseNet + MobileNet +ResNet fusion using
PCA+LDA or ESD classifier 100 1 1 1

Multi-Class Classification Level

Testing Accuracy
(%) Sensitivity Specificity Precision

[7] Color and Shape features+ PCA+ SVM 84.9 - - -

[13] LBP+GRLM+GLCM +Tamura features +SVM 91.3 0.913 0.97 0.913

[13] LBP+GRLM+GLCM+Tamura features +
PCA+SVM 96.7 - - -

[31] GLCM, GRLN, HOG, Tamura and LBP
features++MANOVA+SVM 65.21 0.72 - 0.666

[32] AlexNet
VGG-16

79.33
65.4 - - -

[32] AlexNet+ SVM
VGG-16+SVM

93.21
93.38 - - -

Proposed
MB-AI-His

DenseNet+MobileNet+ResNet fusion using
PCA+LDA or ESD classifiers 99.4 0.995 0.996 0.996
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7. Conclusions

This paper proposed a time-efficient CADx, namely MB-AI-His, for automatic diagno-
sis of pediatric MB and its subtypes from histopathological images. It consists of image
processing, spatial feature extraction, time-frequency feature extraction, feature fusion and
reduction, and classification stages. Spatial DL features were extracted from ResNet-50,
MobileNet, and DenseNet-201 CNNs in the spatial feature extraction stage. Afterward,
spatial-time-frequency DL features were extracted from spatial DL features using DWT.
Next, these three sets of features were merged using PCA and DCT feature reduction meth-
ods. MB-AI-His performed the classification of MB and its subtype using four different
scenarios. Scenario I used the CNNs to perform classification. Spatial DL features were
extracted from the three CNNS and used individually to train five ML classifiers in scenario
II. Spatial-time-frequency DL features extracted in the time-frequency feature extraction
stage were utilized individually to train the five ML classifiers in scenario III. Finally,
these feature sets were combined using PCA and DCT and employed to train the five ML
classifiers. The results showed that each scenario has improved the classification accuracy,
and this appeared clearly in classifying the four subtypes of MB. The results of scenario III
showed that using spatial-time-frequency was better than using spatial features alone (sce-
nario II) and (scenario I). Moreover, fusing such features using PCA and DCT was superior
and achieved accuracies of 100% and 99.4% for binary and multi-class classification levels
respectively, which are higher than scenario III and scenario II and could extremely reduce
the training execution time compared to scenario I. This means that MB-AI-His is accurate,
reliable, and time-efficient. It can be used by the pathologist to reduce the complications
they face while analyzing histopathological images. It can also speed up the diagnosis and
make it more accurate which will correspondingly lower the cost of diagnosis, reduce the
risk of tumor progression, and help in choosing the appropriate follow-up and treatment
plans. Future work will consider collecting additional data from more patients and making
a full dataset available for researchers. Further investigation will be conducted on using
more DL methods to analyze childhood MB subtypes.
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55. Aydoğdu, Ö.; Ekinci, M. An Approach for Streaming Data Feature Extraction Based on Discrete Cosine Transform and Particle

Swarm Optimization. Symmetry 2020, 12, 299. [CrossRef]

http://doi.org/10.1117/12.2073849
http://doi.org/10.1007/s13721-020-0221-5
http://doi.org/10.21227/w0m0-mw21
http://doi.org/10.1109/TNNLS.2018.2790388
http://www.ncbi.nlm.nih.gov/pubmed/29771663
http://doi.org/10.15252/msb.20156651
http://www.ncbi.nlm.nih.gov/pubmed/27474269
http://doi.org/10.3390/diagnostics10010027
http://doi.org/10.3390/app9081526
http://doi.org/10.3390/app9142795
http://doi.org/10.7717/peerj-cs.306
http://doi.org/10.1016/j.neuroimage.2016.09.046
http://www.ncbi.nlm.nih.gov/pubmed/27693612
http://doi.org/10.1016/j.cogsys.2018.12.007
http://doi.org/10.3390/app8091678
http://doi.org/10.1016/j.compbiomed.2021.104245
http://doi.org/10.3390/brainsci9090231
http://doi.org/10.1155/2013/104684
http://doi.org/10.1155/2017/9571262
http://doi.org/10.1155/2013/521034
http://doi.org/10.3390/electronics7080135
http://doi.org/10.3390/sym12020299


Diagnostics 2021, 11, 359 26 of 26

56. Vishwakarma, V.P.; Goel, T. An efficient hybrid DWT-fuzzy filter in DCT domain based illumination normalization for face
recognition. Multimed. Tools Appl. 2018, 78, 15213–15233. [CrossRef]

57. Zhang, X.; Peng, F.; Long, M. Robust Coverless Image Steganography Based on DCT and LDA Topic Classification. IEEE Trans.
Multimedia 2018, 20, 3223–3238. [CrossRef]

58. Dabbaghchian, S.; Ghaemmaghami, M.P.; Aghagolzadeh, A. Feature Extraction Using Discrete Cosine Transform and Dis-
crimination Power Analysis with a Face Recognition Technology. Pattern Recognit. 2010, 43, 1431–1440. [CrossRef]

59. Attallah, O.; GadElkarim, H.; Sharkas, M.A. Detecting and Classifying Fetal Brain Abnormalities Using Machine Learning
Techniques. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA); IEEE:
New York, NY, USA, 2018; pp. 1371–1376.

60. Colquhoun, D. An investigation of the false discovery rate and the misinterpretation of p-values. R. Soc. Open Sci. 2014, 1, 140216.
[CrossRef] [PubMed]

61. Attallah, O. An Effective Mental Stress State Detection and Evaluation System Using Minimum Number of Frontal Brain
Electrodes. Diagnostics 2020, 10, 292. [CrossRef]

http://doi.org/10.1007/s11042-018-6837-0
http://doi.org/10.1109/TMM.2018.2838334
http://doi.org/10.1016/j.patcog.2009.11.001
http://doi.org/10.1098/rsos.140216
http://www.ncbi.nlm.nih.gov/pubmed/26064558
http://doi.org/10.3390/diagnostics10050292

	Introduction 
	Related Work 
	Materials and Methods 
	Childhood MB Dataset Description 
	Deep Learning Approaches 
	ResNet-50 
	DenseNet-201 
	MobileNet 

	Proposed MB-AI-His 
	Image Pre-Processing 
	Spatial Feature Extraction 
	Time-Frequency Feature Extraction 
	Feature Fusion and Reduction 
	Classification 


	Experimental Setup 
	Parameters Setting 
	Evaluation Metrics 

	Results 
	Scenario I Results 
	Scenario II Results 
	Scenario III Results 
	Scenario IV Results 

	Discussion 
	Conclusions 
	References

