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Abstract 
Reaction of imines with 2-silyloxydiene catalyzed by ammonium chloride has 
been perfectly proceeded under environmentally friendly conditions to give 
Mannich-type product selectively. The reaction would proceed via Mannich- 
type mechanism, not cyclization/ring-opening process. Cyclopropanation of 
the corresponding Mannich-type product gave the precursor of prasugrel ske-
leton in high yield. 
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1. Introduction 

Mannich-type reactions are widely recognized as a powerful method for con-
structing a variety of b-aminoketones [1]-[6]. However, Mannich-type reaction 
of imines with 2-silyloxydienes, which provides easy access to β-aminoketones 
having a terminal olefin, is still challenging because [4 + 2] type cycloadducts 
[7]-[15] or mixtures of Mannich-type products and cycloadducts [16] [17] [18] 
are obtained in most cases, as shown in Figure 1. Previously we first reported a 
highly effective Mannich-type reaction of imine with 2-silyloxydiene in the 
presence of zinc triflate and water [19] [20] [21] [22], which gave the corres-
ponding β'-amino-α,β-enones as attractive skeletons for pharmaceutically useful 
compounds [23] [24] [25] [26]. Although many vinylogous Mannich-type reac-
tions have been developed [27]-[36], only a few examples that describe the se-
lective preparation of β'-amino-α,β-enones by the reaction of imine with 
2-silyloxybutadiene have been reported so far. Thus, Kawęcki isolated the 
open-chain products from the aza-Diels-Alder reaction of sulfinimines with the  
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Figure 1. Reaction of imine with 2-silyloxydiene. 
 
Rawal diene [37]. Pan et al. reported the addition of an α,β-unsaturated ketone- 
derived enolate to chiral N-phosphonyl imines [38], and Prasad et al. developed 
the reaction of chiral sulfinimines with silyloxydiene using TMSOTf [39]. In 
spite of these recent achievements, a more economical and environmentally be-
nign synthetic methodology using green and sustainable catalysts has not been re-
ported yet that offer alternatives to metal catalysts. Here we report the ammonium 
chloride-catalyzed Mannich-type reaction of imines with 2-silyloxybutadienes 
under mild conditions. 

2. Results and Discussion 

Initially, we examined the reaction of imine 1a, derived from benzaldehyde and 
o-anisidine, with 2-silyloxybutadiene 2a (Table 1). In contrast to the similar 
aza-Diels-Alder reaction of electron-rich Danishefsky’s diene, reported by Ding 
et al., which afforded the cyclic product in MeOH in the absence of any acids 
[40], the reaction of imine 1a with 2-silyloxybutadiene 2a in EtOH or MeOH 
without additives gave no product (Table 1, entry 1). This result suggested that  
 
Table 1. Mannich-type reacton of imine (1a) with 2-silyloxydiene (2a)a. 

 

Entry Catalyst Solvent Yield (%)b 

1 none EtOH 0 

2 NH4Cl EtOH 95 

3 NH4Cl CH2Cl2 0 

4 NH4Cl ether <20 

5 NH4Cl toluene <20 

6 NaCl EtOH 0 

7 [BMIM]+
4BF+  EtOH 0 

aConditions: imine 1 (1 mmol), 2-silyloxydiene 2 (1.2 mmol), catalyst (0.1 mmol) in dry solvent (1 mL), r.t., 
1 day. bIsolated yields. 
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using additive or catalyst was necessary to promote the reaction. We found that 
reaction with ammonium chloride (10 mol%) as a catalyst in EtOH gave the 
corresponding Mannich-type product 3a selectively in 95% isolated yield (entry 
2). Interestingly, no trace of cycloadduct was detected by 500 MHz 1H NMR 
spectroscopy in the crude product. The previously reported reaction of imines 
having the N-benzyl group [19] did not give any products using ammonium 
chloride in EtOH, indicating that the reactivity of the imine is largely dependent 
on the N-protecting group. Finally, the attempt to perform the reaction using 
other additives and solvents was unsuccessful (Table 1, entries 3 - 7). 

Having established the optimal reaction conditions for the Mannich-type reac-
tion, we subsequently explored the scope of the reaction with respect to the im-
ine substrates (Table 2). Imines 1b and 1c bearing an o- or p-tolyl group reacted 
to provide the corresponding products 3b (90% yield) and 3c (88% yield), respec-
tively. Meanwhile, imines having an electron-donating or an electron-with- 
drawing group all reacted in a satisfactory way to provide the corresponding 
products 3d-3g in high yield. The reaction with 2-silyloxybutadiene 2b, derived 
from mesityl oxide, also proceeded to give 3h-3k in 87% - 97% yields. Further 
investigation of the reaction with 2-silyloxydiene 2c derived from acetylcyclo-
hexene afforded the corresponding β'-amino-α,β-enones in 95% - 98% yields 
(Table 3). 

To investigate the reaction mechanism, the reaction of 1a and 2a was 
quenched after 1 h and analyzed using 500 MHz 1H NMR spectroscopy. No cyc-
loadduct was detected but a Mannich-type product and starting materials were 
observed. We suspect that the Mannich-type products are not formed via cycli-
zation/ring-opening mechanism, as in the case of our previous reaction between 
N-benzyl-protected imine and 2-silyloxybutadiene using zinc triflate and water 
(Scheme 1) [19]. Additionally, further HCl work-up of the acyclic product 3a 
gave no cycloadducts but the β'-amino-α,β-enone was recovered. However, 
N-benzyl-protected acyclic products afforded piperidones upon reaction with 
HCl [19], indicating that the acyclic product 3a is stable under acidic conditions. 

To demonstrate the synthetic utility of the Mannich-type products, we per-
formed the preparation of a precursor of the prasugrel skeleton [41] [42], as  
 

 
Scheme 1. Plausible mechanism. 
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Table 2. Scope of imines (1) and 2-silyloxydienes (2a)a. 

 
aConditions: imine 1 (1 mmol), 2-silyloxydiene 2 (1.2 mmol), ammonium chloride (0.1 mmol) in dry EtOH 
(1 mL), r.t., 1 day. bIsolated yields. 

 
shown in Scheme 2. Thus, the reaction of the imine (1h) derived from 
o-fluorobenzaldehyde with 2-silyloxybutadiene 2b proceeded smoothly to afford  
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Table 3. Reaction of imines (1) with 2-silyloxydiene (2c) derived from acetylcyclohex-
enea. 

 
aConditions: imine 1 (1 mmol), 2-silyloxydiene 2c (1.2 mmol), ammonium chloride (0.1 mmol) in dry 
EtOH (1 mL), r.t., 1 day. bIsolated yields. 

 
the corresponding acyclic product 3o, which was then cyclopropanated to give 
4o in 65% yield. 

3. Conclusion 

In summary, a Mannich-type reaction of imine with 2-silyloxybutadiene that 
provides access to versatile β'-amino-α,β-enones has been developed under green 
conditions. We found that the use of ammonium chloride in EtOH is critical for 
the efficient outcome of the reaction, and this non-metal method is useful for 
various dienes and aldimines compared to reports so far [37] [38] [39]. Accord-
ing to our results, the reaction proceeds via Mannich-type mechanism, instead 
of through a cyclization/ring-opening process. Additionally, we prepared a pre-
cursor of the prasugrel skeleton by cyclopropanation of 3o. Further investigation 
of the applicability of this reaction and mechanistic elucidation is currently in 
progress.  

4. Experimental 

Typical Procedure for Mannich-Type reaction of imine 1 with  
2-silyloxydiene 2 

To a stirred solution of NH4Cl (0.006 g, 0.1 mmol), imine 1 (1 mmol) in dry 
ethanol (1 mL) was added 2-silyloxydiene 2 (1.2 mmol) at r.t.. The reaction mix-
ture was stirred at r.t. for 24 h, the solvent was evaporated at reduced pressure. 
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The crude product was purified by flash column chromatography (ethyl acetate: 
n-hexane = 1:6) to afford 3. 

Data for 3a; colorless oil, 0.34 g, 95%. 1H NMR (CDCl3, 500 MHz) δ 3.17 (dd, 
1H, J = 15.4 Hz, 5.7 Hz), 3.23 (dd, 1H, J = 15.4 Hz, 7.5 Hz), 3.85 (s, 3H), 4.97 
(dd, 1H, J = 6.9 Hz, 6.9 Hz), 6.44 (d, 1H, J = 7.5 Hz), 6.45 - 6.76 (m, 4H), 7.22 - 
7.25 (m, 1H), 7.32 - 7.49 (m, 10H); HRMS (EI) m/z [M]+ calcd. for C24H23NO2 
357.1729, found: 357.1727. 

Data for 3b; colorless oil. 0.30 g, 90%. 1H NMR (CDCl3, 300 MHz) δ 2.02 (s, 
3H), 2.87 (dd, 1H, J = 15.4 Hz, 5.9 Hz), 2.95 (dd, 1H, J = 15.4 Hz, 6.9 Hz), 3.54 
(s, 3H), 4.69 (dd, 1H, J = 6.6 Hz, 6.6 Hz), 6.23 (d, 1H, J = 6.9 Hz), 6.35 - 6.51 (m, 
4H), 6.78 - 6.87 (m, 2H), 7.04 - 7.24 (m, 8H); HRMS (EI) m/z [M]+ calcd. for 
C25H25NO2 371.1885, found: 371.1894. 

Data for 3c; colorless oil. 0.32 g, 88%. 1H NMR (CDCl3, 300MHz) δ 2.06 (s, 
3H), 2.92 (dd, 1H, J = 15.4 Hz, 5.9 Hz), 2.96 (dd, 1H, J = 15.4 Hz, 7.0 Hz), 3.58 
(s, 3H), 4.67 (dd, 1H, J = 6.3 Hz, 6.3 Hz), 6.23 (d, 1H, J = 7.7 Hz), 6.35 - 6.51 (m, 
3H), 6.78 - 6.85 (m, 1H), 6.87 - 7.07 (m, 4H), 7.08 - 7.18 (m, 2H), 7.20 - 7.26 (m, 
3H); HRMS (EI) m/z [M]+ calcd. for C25H25NO2 371.1885, found: 371.1902. 

Data for 3d; colorless oil. 0.32 g, 85%. 1H NMR (CDCl3, 500 MHz) δ 3.12 (dd, 
1H, J = 15.5 Hz, 5.7 Hz), 3.20 (dd, 1H, J = 15.5 Hz, 6.9 Hz), 3.74 (s, 3H), 3.83 (s, 
3H), 4.91 (dd, 1H, J = 6.3 Hz, 6.3 Hz), 6.46 (d, 1H, J = 1.7 Hz), 6.61 - 6.63 (m, 
4H), 6.81 - 6.85 (m, 2H), 7.25 - 7.37 (m, 5H), 7.42 - 7.47 (m, 3H); HRMS (EI) 
m/z [M]+ calcd. for C25H25NO3 387.1834, found: 387.1838. 

Data for 3e; colorless oil. 0.36 g, 93%. 1H NMR (CDCl3, 300MHz) δ 3.12 (dd, 
1H, J = 15.7 Hz, 5.5 Hz), 3.20 (dd, 1H, J =15.7 Hz, 5.5 Hz), 3.85 (s, 3H), 4.93 - 
4.99 (m, 2H), 6.36 (d, 1H, J = 6.2 Hz), 6.61 - 6.76 (m, 4H), 7.26 - 7.53 (m, 10H); 
HRMS (EI) m/z [M]+ calcd. for C24H22NO2Cl 391.1339, found: 391.1328. 

Data for 3f; colorless oil. 0.32 g, 81%. 1H NMR (CDCl3, 500 MHz) δ 3.02 (dd, 
1H, J = 14.9 Hz, 8.6 Hz), 3.28 (d, 1H, J = 3.5 Hz), 3.71 (s, 3H), 5.28 (dd, 1H, J = 
9.1 Hz, 3.4 Hz), 6.21 (dd, 1H, J = 6.2 Hz, 1.8 Hz), 6.59 - 6.74 (m, 4H), 7.17 - 7.59 
(m, 10H); HRMS (EI) m/z [M]+ calcd. for C24H22NO2Cl 391.1339, found: 391.1335. 

Data for 3g; colorless oil. 0.33 g, 87%. 1H NMR (CDCl3, 500 MHz) δ 3.13 (dd, 
1H, J = 15.5 Hz, 5.7 Hz), 3.20 (dd, 1H, J = 15.5 Hz, 5.7 Hz), 3.83 (s, 3H), 4.93 
(dd, 1H, J = 6.3 Hz, 6.3 Hz), 6.35 - 6.39 (m, 1H), 6.59 - 6.80 (m, 4H), 6.95 - 6.99 
(m, 2H), 7.18 - 7.25 (m, 3H), 7.33 - 7.38 (m, 3H), 7.45 - 7.53 (m, 2H); HRMS 
(EI) m/z [M]+ calcd. for C24H22NO2 375.1634, found: 375.1628. 

Data for 3h; colorless oil. 0.29 g, 95%. 1H NMR (CDCl3, 300 MHz) δ 1.72 (s, 
3H), 2.00 (s, 3H), 2.76 (dd, 1H, J = 16.9 Hz, 5.9 Hz), 2.82 (dd, 1H, J = 16.9 Hz, 
5.9 Hz), 3.81 (s, 3H), 4.77 (dd, 1H, J = 6.6 Hz, 6.6 Hz), 5.91 (brs, 1H), 6.30 - 6.35 
(m, 1H), 6.45 - 6.55 (m, 1H), 6.58 - 6.64 (m, 2H), 7.06 - 7.15 (m, 1H), 7.17 - 7.20 
(m, 2H), 7.26 - 7.28 (m, 2H); HRMS (EI) m/z [M]+ calcd. for C20H23NO2 
309.1729, found: 309.1722. 

Data for 3i; colorless oil. 0.31 g, 97%. 1H NMR (CDCl3, 500 MHz) δ 1.85 (s, 
3H), 2.11 (s, 3H), 2.30 (s, 3H), 2.90 (dd, 1H, J = 13.2 Hz, 5.7 Hz), 2.93 (dd, 1H, J 
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= 13.2 Hz, 5.7 Hz), 3.85 (s, 3H), 4.85 (dd, 1H, J = 6.9 Hz, 6.9 Hz), 6.04 (brs, 1H), 
6.44 - 6.50 (m, 1H), 6.58 - 6.52 (m, 1H), 6.55 - 6.73 (m, 2H), 7.10 - 7.13 (m, 2H), 
7.20 - 7.28 (m, 2H); HRMS (EI) m/z [M]+ calcd. for C21H24NO2 323.1885, found: 
323.1894. 

Data for 3j; colorless oil. 0.31 g, 92%. 1H NMR (CDCl3, 300 MHz) δ 1.80 (s, 
3H), 2.08 (s, 3H), 2.80 (dd, 1H, J = 15.4 Hz, 6.2 Hz), 2.90 (dd, 1H, J = 15.4 Hz, 
6.2 Hz), 3.70 (s, 3H), 3.80 (s, 3H), 4.81 (dd, 1H, J = 6.6 Hz, 6.6 Hz), 5.95 - 6.00 
(m, 1H), 6.34 - 6.44 (m, 1H), 6.52 - 6.58 (m, 1H), 6.67 - 6.72 (m, 2H), 6.79 - 6.84 
(m, 2H), 7.24 - 7.28 (m, 2H); HRMS (EI) m/z [M]+ calcd. for C21H25NO3 
339.1834, found: 339.1836. 

Data for 3k; colorless oil. 0.29 g, 89%. 1H NMR (CDCl3, 300 MHz) δ 1.85 (s, 
3H), 2.10 (s, 3H), 2.88 (dd, 1H, J = 15.4 Hz, 5.9 Hz), 2.92 (dd, 1H, J = 15.4 Hz, 
5.9 Hz), 3.11 (s, 3H), 4.84 (dd, 1H, J = 6.6 Hz, 6.6 Hz), 5.99 - 6.01 (m, 1H), 6.36 
(d, 1H, J = 7.7 Hz), 6.59 - 6.76 (m, 3H), 6.95 - 7.01 (m, 2H), 7.32 - 7.37 (m, 2H); 
HRMS (EI) m/z [M]+ calcd. for C20H22NO2F 327.1635, found: 327.1628. 

Data for 3l; colorless oil. 0.33 g, 98%. 1H NMR (CDCl3, 300 MHz) δ 1.50 - 1.65 
(m, 4H), 2.15 - 2.28 (m, 4H), 3.12 (d, 2H, J = 6.6 Hz), 3.85 (s, 3H), 4.82 - 4.90 (m, 
1H), 4.92 - 5.05 (m, 1H), 6.37 (dd, 1H, J = 5.9 Hz, 1.8 Hz), 6.57 - 6.84 (m, 4H), 
7.18 - 7.39 (m, 5H); HRMS (EI) m/z [M]+ calcd. for C22H25NO2 335.1885, found: 
335.1876. 

Data for 3m; colorless oil. 0.27 g, 78%. 1H NMR (CDCl3, 300 MHz) δ 1.50 - 
1.65 (m, 4H), 2.15 - 2.25 (m, 4H), 2.30 (s, 3H), 3.11 (d, 2H, J = 6.6 Hz), 3.85 (s, 
3H), 4.82 (dd, 1H, J = 6.6 Hz, 6.6 Hz), 6.40 (d, 1H, J = 6.2 Hz), 6.57 - 6.75 (m, 
3H), 6.83 - 6.86 (m, 1H), 7.10 (d, 2H, J = 8.0 Hz), 7.27 (d, 2H, J = 8.4 Hz); HRMS 
(EI) m/z [M]+ calcd. for C23H27NO2 349.2042, found: 349.2044. 

Data for 3n; colorless oil. 0.34 g, 95%. 1H NMR (CDCl3, 300 MHz) δ 1.56 - 
1.59 (m, 4H), 2.17 - 2.21 (m, 4H), 3.11 (dd, 2H, J = 5.9 Hz, 1.8 Hz), 3.86 (s, 3H), 
4.80 - 4.87 (m, 1H), 4.96 (brs, 1H), 6.33 (dd, 1H, J = 7.7 Hz, 1.5 Hz), 6.59 - 6.77 
(m, 3H), 6.82 - 6.87 (m, 1H), 6.93 - 7.02 (m, 2H), 7.33 - 7.37 (m, 2H); HRMS 
(EI) m/z [M]+ calcd. for C22H24NO2F 353.1791, found: 353.1797. 

Data for 3o; colorless oil. 0.24 g, 97%. 1H NMR (CDCl3, 500 MHz) δ 1.85 (s, 
3H), 2.09 (s, 3H), 2.92 (dd, 1H, J = 15.4 Hz, 7.7 Hz), 2.97 (dd, 1H, J = 15.4 Hz, 
7.7 Hz), 3.86 (s, 3H), 5.14 - 5.18 (m, 1H), 6.06 - 6.07 (m, 1H), 6.40 - 6.45 (m, 
1H), 6.58 - 6.65 (m, 1H), 6.68 - 6.80 (m, 2H), 7.00 - 7.08 (m, 2H), 7.17 - 7.25 (m, 
1H), 7.35 - 7.37 (m, 1H); HRMS (EI) m/z [M]+ calcd. for C20H22NO2F 327.1635, 
found: 327.1637. 

Cyclopropanation of 3o using trimethyloxosulfonium iodide  
To a stirred solution of 3o (0.243 g, 0.74 mmol) in DMSO (1 mL) was added 

trimethyloxosulfonium iodide (0.22 g, 1.0 mmol) and NaH (0.024 g, 1.0 mmol) 
at r.t. The mixture was stirred for 1 day and quenched with ice-water (20 mL). 
The mixture was extracted with ether, washed twice with water, and the organic 
layers were dried by Na2SO4. The solvent was removed at reduced pressure to 
give the product 4o as a white solid (0.21g, 65%). 
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Data for 4o; 1H NMR(CDCl3, 500MHz) δ 0.71 - 0.72 (m, 1H), 0.86 (s, 3H), 
1.06 (s, 3H), 1.15 - 1.16 (m, 1H), 1.75 - 1.80 (m, 1H), 3.06 (dd, 1H, J = 16.1 Hz, 
5.7 Hz), 3.09 (dd, 1H, J = 16.1 Hz, 5.7 Hz), 3.77 (s, 3H), 5.08 (brs, 1H), 5.16 (dd, 
1H, J = 6.3 Hz, 6.3 Hz), 6.40 - 6.42 (m, 1H), 6.60 - 6.65 (m, 1H), 6.71 - 6.74 (m, 
2H), 7.01 - 7.05 (m, 2H), 7.17 - 7.25 (m, 1H), 7.36 - 7.37 (m, 1H); HRMS (EI) 
m/z [M]+ calcd. for C21H24NO2F 341.1791, found: 341.1796. 
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