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The impact of ethnicity and
intra-pancreatic fat on the
postprandial metabolome
response to whey protein in
overweight Asian Chinese and
European Caucasian women
with prediabetes

Aidan Joblin-Mills1,2*, Zhanxuan Wu1,2,3, Karl Fraser1,2,
Beatrix Jones2,4, Wilson Yip2,5, Jia Jiet Lim2,5, Louise Lu2,5,
Ivana Sequeira2,5 and Sally Poppitt2,5

1Food Chemistry and Structure Team, Agresearch, Palmerston North, New Zealand, 2High-Value
Nutrition, National Science Challenge, Auckland, New Zealand, 3School of Food and Nutrition,
Massey University, Palmerston North, New Zealand, 4Department of Statistics, University of
Auckland, Auckland, New Zealand, 5Human Nutrition Unit, School of Biological Sciences, University
of Auckland, Auckland, New Zealand
The “Thin on the Outside Fat on the Inside” TOFI_Asia study found Asian

Chinese to be more susceptible to Type 2 Diabetes (T2D) compared to

European Caucasians matched for gender and body mass index (BMI). This

was influenced by degree of visceral adipose deposition and ectopic fat

accumulation in key organs, including liver and pancreas, leading to altered

fasting plasma glucose, insulin resistance, and differences in plasma lipid and

metabolite profiles. It remains unclear how intra-pancreatic fat deposition

(IPFD) impacts TOFI phenotype-related T2D risk factors associated with Asian

Chinese. Cow’s milk whey protein isolate (WPI) is an insulin secretagogue

which can suppress hyperglycemia in prediabetes. In this dietary intervention,

we used untargeted metabolomics to characterize the postprandial WPI

response in 24 overweight women with prediabetes. Participants were

classified by ethnicity (Asian Chinese, n=12; European Caucasian, n=12) and

IPFD (low IPFD < 4.66%, n=10; high IPFD ≥ 4.66%, n=10). Using a cross-over

design participants were randomized to consume three WPI beverages on

separate occasions; 0 g (water control), 12.5 g (low protein, LP) and 50 g (high

protein, HP), consumed when fasted. An exclusion pipeline for isolating

metabolites with temporal (T0-240mins) WPI responses was implemented, and

a support vector machine-recursive feature elimination (SVM-RFE) algorithm

was used to model relevant metabolites by ethnicity and IPFD classes.

Metabolic network analysis identified glycine as a central hub in both

ethnicity and IPFD WPI response networks. A depletion of glycine relative to

WPI concentration was detected in Chinese and high IPFD participants
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independent of BMI. Urea cycle metabolites were highly represented among

the ethnicity WPI metabolome model, implicating a dysregulation in ammonia

and nitrogen metabolism among Chinese participants. Uric acid and purine

synthesis pathways were enriched within the high IPFD cohort’s WPI

metabolome response, implicating adipogenesis and insulin resistance

pathways. In conclusion, the discrimination of ethnicity from WPI

metabolome profiles was a stronger prediction model than IPFD in

overweight women with prediabetes. Each models ’ discriminatory

metabolites enriched different metabolic pathways that help to further

characterize prediabetes in Asian Chinese women and women with

increased IPFD, independently.
KEYWORDS

prediabetes, whey protein isolate, ethnicity, intra-pancreatic fat deposition,
metabolomics, machine learning, pathway enrichment, network topology
Introduction

The prevalence of type 2 diabetes (T2D) in China has

increased drastically in recent decades, reaching epidemic

proportions (1). As mainland China represents the highest

number of T2D and prediabetic cases worldwide, most

concerning to the population is the increasing prevalence in

young and lean adults, a worse profile when compared to, for

example, more resilient European Caucasians (2, 3). The

susceptibility of Asian Chinese to T2D can be attributed to

both genetic and lifestyle risk factors, with decreased exercise

and westernized diets important (4, 5). Likely to play a role in

exacerbating T2D onset and metabolic syndrome (6, 7) is the

preferential accumulation of both visceral adipose tissue (VAT)

and ectopic organ fat, far more so than permissive subcutaneous

adipose tissue (SAT).

A high VAT+organ fat to SAT ratio in outwardly lean

individuals has been termed the “Thin on the Outside, Fat on

the Inside” (TOFI) phenotype, and may help to explain the high

T2D risk among Asian countries relative to other parts of the

world (8, 9). A high VAT/SAT ratio among Asian cohorts has

p r ev i ou s l y be en a s soc i a t ed w i th hype rg l y c em ia ,

hyperinsulinemia and/or insulin resistance, high blood

pressure, and increased levels of plasma uric acid and

triglycerides (TGs), regardless of body mass index (BMI) and/

or a diabetic diagnosis (10–12). The accumulation of SAT in

overweight individuals has been proposed to provide a beneficial

sink for free fatty acids and TGs, reducing the exposure of organs

to lipotoxic stress (13). Several authors have proposed that when

the lipid storage capacity of SAT becomes oversaturated,

individuals may be predisposed to excess VAT and increased

accumulation of ectopic fat in skeletal muscle, epicardial tissue,

liver and pancreas (14–16). Why some individuals are more
02
susceptible to ectopic fat accumulation has not yet

been established.

Magnetic resonance imaging and spectroscopy (MRI and

MRS) shows differences in SAT, VAT, and ectopic fat depots to

be poorly identified using standard anthropometry techniques

and total body fat assessments (9, 17). A previous study from our

laboratory conducted byWu et al. demonstrated that SAT, VAT,

pancreas and liver fat could be characterized through untargeted

lipidomics and metabolomics methods (18). Using MRI and

MRS to characterize body fat depots in healthy and pre-diabetic

Caucasian and Chinese women in the TOFI_Asia study, we

subsequently identified a set of metabolomic markers that could

successfully predict the fat levels of high VAT/SAT ratios, intra-

pancreatic and intra-liver fat depots, with greater predication

accuracy (cum R2) than typical clinical markers, cardiovascular

disease (CVD) risk factors, and anthropometric measurements.

Using partial least squares discriminative analysis (PLS-DA) we

also identified a clear and robust separation in lipid and polar

metabolite profiles that characterized the two ethnic

cohorts (19).

Whilst intra-pancreatic fat deposition (IPFD) has been

linked to suppressed insulin secretion in participants with

impaired glucose tolerance (IGT) and impaired fasting

glycaemia (IFG) (20), a recent review has reported a series of

findings showing low level IPFD to be common even in

metabolically healthy individuals (21). The authors propose

that a clearer distinction between fatty pancreas disease (FPD)

and the non-disease related IPFD is required. A large-scale MRI

study conducted by Wong et al. assessed FPD in a cohort of 685

Hong Kong residents (≥18 years of age), using the 95th

percentile of IPFD in individuals without metabolic syndrome

or alcohol abuse as a cutoff, and proposed 10.4% as the IPFD cut

point for FPD. However, there is no international standard for
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MR-assessed IPFD established at the time of writing. Their cutoff

point identified 16.1% prevalence of FPD in the Asian Chinese

cohort (22). With such a high tendency for Asian Chinese to

accumulate VAT/SAT and develop FPD, the role of IPFD in

pathogenesis of T2D remains unclear. IPFD may be quite

widespread throughout the world’s population (21). It raises

the question of whether IPFD is part of the TOFI phenotype, and

whether it plays a significant role in T2D progression from

prediabetes, or whether other factors associated with the Asian

Chinese ethnicity are more pertinent.

Several dietary intervention studies investigating prevention

of T2D, weight loss and postprandial satiety have shown

promising results for dairy products, in particular the whey

protein fraction (23–25). Rich in essential amino acids (EAAs),

non-essential amino acids (NEAAs) and essential branch-chain

amino acids (BCAAs), whey protein isolate (WPI) can decrease

postprandial hyperglycemia and promote insulin secretion in

both healthy and diabetic individuals (26, 27). We questioned

whether differences in postprandial response to WPI would be

detectable using a broader untargeted metabolomics platform, to

compare prediabetic (raised fasting plasma glucose, FPG, 5.6–6.9

mmol/L) European Caucasian and Asian Chinese women with

varying degrees of IPFD.

Due to the natural variability that exists among cohorts,

identifying phenotypic biomarkers from large-scale omics

datasets can be a difficult task. One method metabolomic

researchers have begun using is support vector machine-

recursive feature elimination (SVM-RFE) algorithm (28).

SVM-RFE machine learning is an optimal method for

identifying phenotypic features from small cohort studies, due

to the implementation of a SVM kernel trick; which projects

variables from a 2-dimensional space to a 3-dimensional space,

providing more options for optimizing decision boundary

parameters for the classification of a phenotype (29). Use of

SVM with RFE not only allows for optimal discrimination of

different classes in a model, but also identifies the important

variables contributing towards the classification model,

complementing traditional multivariate analysis (30). This has

proven to be an effective method for classifying different cancers

from large scale genomic datasets (31, 32).

With the development and curation of open-source

databases such as the Human Metabolome database (HMDB)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) (33,

34), the detection and annotation of hundreds of metabolites via

hydrophilic interaction chromatography tandem mass

spectrometry (HILIC–MS) facilitates the use of more holistic

approaches to data processing, such as network topology and

bio-ontology enrichment analysis’ (35–37). These bioinformatic

tools provide researchers with a method for discerning biological

relevancy from data complexity. Thus, we aimed to model the

WPI metabolome response firstly for European Caucasian and

Asian Chinese participants, and secondly for participants with

lower and higher IPFD than the median value for our current
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cohort (4.66% IPFD), to determine their impact on metabolic

markers and metabolic pathways associated with prediabetes.

Notably the IPFD cut point was comparable with that of Singh

and colleagues in their 2017 systematic review and meta-

analysis (38).
Materials and methods

Study design

The presented work is a continuation of previously reported

TOFI_Asia studies (7, 18). The recruitment procedures, study

design, WPI composition, participant characteristics, appetite

biomarkers and gluco-corticoid hormone measurements have

been summarized previously by Lim et al. (39). In brief, this was

an acute, randomized, three treatment cross-over study which

investigated the postprandial WPI response of 12 Asian Chinese

females and 12 European Caucasian females, aged 20–69 years

and BMI 19.6–36.8 kg/m2. At the time of screening, all

participants had prediabetes based on ADA criteria, with

raised FPG of 5.6–6.9 mmol/L (40). Magnetic resonance

imaging (MRI) was used to quantify pancreatic fat in 20

participants, as detailed by Wu et al. (18). low and high IPFD

were defined as < and ≥ the cohort median of 4.66%,

respectively. Each participant attended the Human Nutrition

Unit (HNU), University of Auckland, New Zealand for three

study visits over a three-week duration, with a minimum seven-

day wash-out period. At each visit, a fasted baseline (T = 0 min)

plasma sample was collected. Following consumption of the 280

mL test drinks comprising 0 g (water control, WC), 12.5 g (low

protein, LP) and 50 g (high protein, HP) WPI, postprandial

plasma samples were collected via a venous cannula at T = 30,

60, 120 and 240 min. No other foods or beverages were

consumed during the study morning and participants followed

a sedentary protocol.
Metabolomics procedures

Sample preparation
Blood samples were stored at -80°C and batch analysed at

the end of the study. For each sample, 100 mL plasma was mixed

with 800 mL pre-chilled (-20°C) CHCl3:MeOH (50:50, v/v),

agitated for 30 s and placed in a -20°C freezer for 60 min to

allow protein precipitation. 400 mL milliQ water was

subsequently added to each sample, agitated for 30 s and

centrifuged at 11,000 rpm at 4°C for 10 min. From each

biphasic separation, 200 mL of the upper aqueous layer was

transferred to 2 mL micro-centrifuges and dried under a

nitrogen stream before being stored at -80°C. To account for

batch-to-batch variations, pooled quality control (QC) samples

were prepared by pooling aliquots from each sample into a clean
frontiersin.org
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glass vial and stored at -80°C (41). Pooled samples were

combined from each batch and dispensed into separate 200 µl

aliquots for drying under a nitrogen stream and -80°C storage.

Dried polar extracts were reconstituted in 200 mL acetonitrile:

H2O (50:50, v/v) before injection (18).

Liquid chromatography tandem mass
spectrometry conditions

Polar metabolites were analysed with an Accela 1250

quaternary UHPLC pump coupled to an Exactive Orbitrap

mass spectrometry (Thermo Fisher Scientific, USA).

Chromatographic separation was carried out at 25°C on a

SeQuant® ZIC®-pHILIC 5 µm 2.1 mm × 100 mm column

(Merck, Darmstadt, Germany) using the following solvent

system: A = 10 mM ammonium formate in milliQ water, B =

0.1% formic acid in acetonitrile at a gradient program flow rate

of 250 µL/min: 3–3% A (0.0–1.0 min), 3–30% A (1.0–12.0 min),

30–90% A (12.0– 14.5 min). 90% A was maintained for 3.5 min

followed by re-equilibration with 3% A for 7 min. An injection

volume of 2 µL was used. The electrospray probe was operated at

room temperature (25°C) to avoid degradation of thermally

labile compounds. External mass calibration of the Orbitrap

prior to sample analysis was performed by the flow injection of

the calibration mix solution according to manufacturer’s

instruction. High resolution (25,000) data were acquired by

full scan (m/z 55 to 1100) with a source voltage of 4000 V for

both ESI + and ESI - ion modes. A capillary temperature of 325°

C was set, and sheath, auxiliary, and sweep gas flow rates of 40,

10, and five arbitrary units were applied, respectively (42).

Peak processing
Raw datafiles were converted to mzXML format using

ProteoWizard tool MSconvert (v 3.0.1818). Open mzXML data

files were pre-processed for features by untargeted peak filtering,

peak alignment, and peak filling parameters with the XCMS

package (v3.0.2) in the R programming environment (v3.2.2)

(43, 44). Features not detected in 100% of the QC samples were

excluded from the analysis and resulting extracted ion

chromatograms were manually examined to filter poorly

integrated peaks generated by the diffreport function. Signal

drift and batch effects were corrected for by LOESS algorithm in

the online W4M Galaxy environment, and feature filtering with

a < 30% coefficient of variation limit among QC samples was

applied (45, 46).
Feature exclusion pipeline

Before pre-processing, a K-nearest neighbours’ algorithm

was used to impute values for two missing samples. A Shapiro-

Wilk normality test was performed over the dataset and features

with p-value ≤ 0.05 were log transformed to reduce skewed

distributions. The resulting data set was mean centred, and
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(47). To determine likely features impacted by WPI intake,

linear mixed-effect (LME) modelling with 10,000 permutations

was performed with Meal, Time, Meal*Time, Age and BMI as

fixed effects, and participants ID’s as random effects (48). LME

modelling was performed using the nlme package in the R

environment. Benjamini-Hochberg false discovery adjustments

were applied to p-values and resulting features with q-values ≥

0.05 were filtered out.

To further filter out LME false positives, incremental area-

under-the-curve (iAUC) calculations were performed against

remaining features using the trapezoidal method in Graphpad

Prism (v9.0.0); values were obtained for each meal per

participant using the mean of each feature at T=0 as a baseline

and ignoring peaks less than 75% of the height from minimum

to maximum Y, and peaks defined by fewer than three adjacent

time points. Feature net area values were subsequently used to

measure fold-change (FC) between each WPI concentration and

water control in MetaboAnalyst (v5.0.0) (49, 50). Features with a

significant log2 FC for the comparison of 12.5 g/0 g WPI alone

were removed and remaining features with a significant log2 FC

for both WPI meal comparisons and features significant for the

50 g/0 g WPI comparison alone, were shortlisted for modelling.
Machine learning and
multivariate modelling

Support vector machine-recursive feature
elimination and cross-validation

Support vector machine–recursive feature elimination

(SVM-RFE) procedures were implemented using the Github

repository code provided by John Colby (51), and the e1071

package in R environment. Linear kernel SVM was used to rank

all AUC-log2FC features by weight across a 10-fold cross-

validation (CV) set for the classification of ethnicity

(Caucasian and Chinese, n=24) and pancreatic fat (IPFD_Low

and IPFD_High, n=20) as postprandial WPI metabolome

models (31). Feature ranks were averaged across all training

set folds and the lowest weights were removed by “multiple

RFE”, wherein reducing the feature total by half before

introducing traditional “one-by-one” SVM-RFE (32). Final

ranking scores for top features were presented as averages

across all training folds per model. To obtain generalized error

estimates for testing folds, a radial basis function (RBF) kernel

SVM was first applied to training folds with optimal tuning of

the SVM hyperparameters (Cost and Gamma combinations) by

internal 10-fold CV. Optimal parameters were used to train the

SVM of each training fold before predicting corresponding test

folds to calculate generalized error estimates (52). All testing fold

generalization error estimates were averaged, and the process

repeated with varying numbers of top features as input at each

iteration to determine optimal number of features for a given
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classification model. For each model matrix, a comparative

confusion (dummy) matrix was created by reassigning each

feature-columns y values to a random class ID using the

Kutools package in Excel (53). Ethnicity and IPFD dummy

matrices were subject to all SVM-RFE procedures to calculate

average feature ranks and generalized error estimates for

comparison to respective query models. Top 20 features were

annotated as metabolites and presented with SVM-RFE average

ranking value and their respective Meal*Time LME

interaction significance.

Multivariate analysis
All multivariate analysis was performed in SIMCA software

version 16 (Sartorius, Umeå Sweden). Principle component

analysis (PCA) and partial least squares-discriminant analysis

(PLS-DA) was applied to evaluate each classification model’s

performance through mSVM-RFE ranked features across all

plasma samples (i.e Time and Meal). PLS-DA models were

subject to 100-fold permutations to evaluate separation

performances and visualized (30).
Metabolite annotations

A subset of positive and negative mode features were

annotated using accurate mass and retention time matching to

an in-house library of authentic standards. These were used as a

quality control measure for annotating features with the metID

package (GitHub) in R (54). Features were subsequently

annotated using metID’s hilic 0.0.2 database with accurate

mass and a retention time window shift of 420 s as calculated

from initial in-house library matching. Features that lacked an

annotation had their molecular and co-eluting ions manually

inspected for pseudo MS2 fragmentation patterns created from

in-source fragmentation. Pseudo fragments and chemometric

features (e.g., isotopes, multiple adducts) representing the same

metabolites were annotated accordingly. Remaining features

were annotated using the online Human Metabolome

Database (HMDB) using an m/z ppm error of 15 for positive

and negative ion modes (33).
Metabolic network analysis and
pathway enrichment

Machine learning and multivariate processing of

metabolomics features determines the weight of each

metabolite through vector values alone, which can be

advantageous when characterizing metabolites with unknown

annotations, but becomes restricted in application without

consideration of a given metabolite’s biological ontology (55,

56). To determine the relevance of Ethnicity and IPFD model

metabolites to established networks and metabolic pathways, the
Frontiers in Clinical Diabetes and Healthcare 05
KEGG IDs of top-ranking metabolites for each query model

were subject to network construction and topological analysis

using the MetScape plugin (v3.1.3) within Cytoscape (v3.1.3)

(57), and pathway enrichment with Metabolite Set Enrichment

Analysis (MSEA) in MetaboAnalyst (58). Each query model was

visualized as a network through Metscapes pathway-based

network build function, and topological parameters were

extracted using the network analyzer tool (59). To identify the

most important metabolites of the network, a relative

betweenness centrality algorithm was applied, measuring the

number of shortest paths going through a node for a given

network. This takes into consideration the global network

structure, rather than the immediate neighbor of the query

node (35).

To identify pathways enriched from input metabolites,

MSEA was implemented with hypergeometric testing through

over-representation analysis (ORA) using the KEGG database

with 80 registered Human metabolic pathways (34). Enriched

pathways p-values were subject to FDR correction and presented

with relative impact values. Impact values were calculated

autonomously through pathway topology and presented as a

cumulative percentage representing the importance of all

matched metabolites for the enriched query pathway (60).
Results

Baseline characteristics of the cohorts

All 24 women enrolled completed the three treatment arms.

A subset of 20 women had MRI-assessed IPFD, and a range of

2.13 to 12.7% IPFD was calculated. Mean (SD) age, BMI, FPG

and IPFD are presented for both ethnicity (European Caucasian

and Asian Chinese) and IPFD (Low and High) cohorts (Table 1).

In comparison to the Caucasian cohort (n=12), the Chinese

cohort (n=12) had a significantly lower age and BMI, but similar

FPG and IPFD. When comparing IPFD cohorts, the High IPFD

cohort (n=10) had a significantly higher mean age, but similar

BMI and FPG to the Low IPFD cohort.
Postprandial metabolome responses

In total, 524 features (positive and negative ionization mode)

were detected by HILIC-MS metabolomics. After batch

correction, filtration and removal of noise, a matrix of 367

features was subject to linear mixed effect modeling to

determine potential metabolites impacted by WPI intake over

time, accounting for age and BMI. 216 features were significant

(q-value ≤ 0.01) for Meal*Time interaction and were further

processed as incremental area under the curve (iAUC) per meal

and fold change (FC) calculated between meals 0 g WC/12.5 g

LP and 0 g WC/50 g HP respectively (Supplementary Figure 1).
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FC values identified 92 up-regulated and 8 down-regulated

features with the consumption of 12.5 g LP. After 50 g HP, 14

additional features were up-regulated, 11 features were down-

regulated relative to 12.5 g LP, leaving a total of 125 features

of interest.
Ethnicity and intra-pancreatic fat
deposition modelling

Support vector machine-recursive feature elimination

(SVM-RFE) in combination with 10-fold cross-validations was

implemented to classify Ethnicity (Caucasian and Chinese;

n=24) and IPFD (Low and High; n=20) models with the mass

spectrometer features identified in the postprandial whey

protein response. Both Ethnicity and IPFD SVM-RFE models
Frontiers in Clinical Diabetes and Healthcare 06
with respective Ethnicity_dummy and IPFD_dummy confusion

models were plotted to compare their relative success in

classification by the number of top-ranking features relative to

generalized error estimates (Figure 1). Neither dummy model

identified an optimal generalized error estimate with any given

number of input features, while Ethnicity as a model was

classified with an error estimate of 0.042 from the input of

four top-ranking features, and IPFD was classified with an error

estimate of 0.047 from the top 19 features. Therefore, the top 20

features were annotated discriminating both Caucasian and

Chinese cohorts and Low and High IPFD cohorts.

The input of imidazolelactic acid, uric acid, N(ϵ)-methyl-

lysine and L-cystine as model metabolites alone was sufficient in

discriminating Caucasian and Chinese cohorts (Table 2). A

closer look at the top-ranking features for Ethnicity by plotting

Time and Meal identified Caucasians as having a base (T=0)
TABLE 1 Participant characteristics.

Ethnicity Intra-pancreatic fat

Caucasian
(n=12)

Chinese
(n=12)

P value Low
(n = 10)

High
(n = 10)

P value

Age (years) 54.7 ± 15.6 42.0 ± 10.8 0.038 35.9 ± 12.5 53.9 ± 8.1 0.002

BMI (kg/m2) 31.4 ± 4.2 26.9 ± 3.8 0.014 28.7 ± 3.8 28.2 ± 5.1 0.803

FPG (mmol/L) 6.1 ± 0.4 5.9 ± 0.3 0.257 5.8 ± 0.4 6.1 ± 0.4 0.147

IPFD (%) 5 ± 1.5* 4.8 ± 2.4 0.864 3.5 ± 0.8 6.2 ± 2.1 0.002
front
Values are mean ± standard deviation (SD). * n=8; MRI artifact resulted in missing values for 4 individuals. BMI, body mass index. FPG, fasting plasma glucose. IPFD, intra-pancreatic fat
deposition; % pancreas fat. Statistical significance set at P < 0.05
FIGURE 1

Generalized ten-fold cross validation error estimates for each testing set iteration per number of top SVM-RFE input features. Ten-fold CV error
estimates depict the prediction accuracy of ethnicity and intra-pancreatic fat deposition (IPFD) models relative to number of top-ranking
features input at each testing fold iteration. Ethnicity_dummy and IPFD_dummy models represent respective query model classes against
shuffled y axis values (feature vectors), reflecting the classification legitimacy of each query model. Horizontal dotted line indicates threshold for
optimal features input for an acceptable error estimate value (< 0.05) for model prediction. Red circle denotes the minimum number of input
features to obtain an optimal error estimate to classify Ethnicity as a model. Red square denotes the minimum number of input features to
obtain an optimal error estimate to classify IPFD as a model.
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two-fold higher separation of imidazolelactic acid and N

(ϵ)-methyl-lysine levels than the Chinese cohort, regardless of

WPI (Supplementary Figure 2A, 2C). While both models had

citric acid, creatine, glycine, imidazolelactic acid, N(ϵ)-methyl-

lysine, octopamine, ornithine and uric acid as top-ranking

metabolites (Table 2), only the Ethnicity model presented

branched-chain amino acids valine, isoleucine and leucine

within the classification model. The top IPFD metabolite, Uric

acid, presented an average ranking score of 4.1 across all testing

folds, higher than the ranking scores of top four ranking

Ethnicity metabolites (2 - 3.8). The smaller the average

ranking score for a feature, the greater its contribution

towards a SVM classification. This indicates that the features

significant for Meal*Time interaction had a greater strength for

predicting ethnicity as a model than IPFD, and that uric acid is a

stronger predictor of ethnicity than it is for IPFD.

The strength of both SVM-RFE models was further validated

through PCA and PLS-DA. While Ethnicity PCA modelling

(R2X 0.526) had better separation than IPFD (R2X 0.428), both

were low in separation as an un-supervised model from their

respective cumulative R2X values (Q2 0.297, Q2 0.284)

(Supplementary Figures 4A, 4B). PLS-DA resulted in a strong

separation of Ethnicity with permutation testing (R2Y 0.788, Q2

0.75) (Figure 2A), while the IPFD model PLS-DA presented a
Frontiers in Clinical Diabetes and Healthcare 07
moderate separation with ranking features (R2Y 0.501, Q2

0.354). (Figure 2B)
Metabolic network analysis of ethnicity
model metabolites

From the top-ranking metabolites discriminating

participants Ethnicity by postprandial WPI response; 19

metabolites presented KEGG IDs, in which 16 (Table 2) were

available for metabolic network analysis and pathway

enrichment when using the Metscape and KEGG databases

against 80 human metabolism pathways. Ethnicity model

metabolites constructed a single component metabolic network

with 492 nodes and 563 edges (Figure 3). Network centrality

identified glycine, L-glutamate, and L-phenylalanine as hub

nodes among the array of metabolites, enzymes and genes

based on their measure of degree (>10) and betweenness

centrality (>0.1) (Table 3). Over representation analysis (ORA)

identified three pathways as significant with 16 ethnicity

associated metabolites (Table 4), This included alanine,

aspartate and glutamate metabolism with four metabolites,

arginine biosynthesis with four metabolites, and arginine and

proline metabolism with five metabolites.
TABLE 2 Top 20 SVM-RFE metabolites for predicting ethnicity and IPFD models.

Ethnicity model IPFD model

Annotation AvgRank Meal*Time Annotation AvgRank Meal*Time

Imidazolelactic acid 2 6.56E-03 Uric acid 4.1 2.40E-03

Uric acid 2.6 2.40E-03 N(ϵ)-Methyl-Lysine 9.4 6.89E-04

N(ϵ)-Methyl-Lysine 2.7 6.89E-04 Octopamine 12.8 6.89E-04

L-Cystine 3.8 2.81E-02 Unk m/z 156.895: rt 762s 13.2 1.41E-02

Glycine 6.5 6.89E-04 L-Lysine 17.8 6.89E-04

L-Valine 14.8 6.89E-04 Ornithine 19.5 6.89E-04

L-Arginine 15.1 6.89E-04 L-Tyrosine 20.6 6.89E-04

Citric acid 19.1 6.89E-04 Imidazolelactic acid 21.7 6.56E-03

Octopamine 19.9 6.89E-04 Glyceric acid 22.1 4.53E-03

Ornithine 21.9 6.89E-04 L-Glutamine 23.7 1.30E-03

4-Aminobutanoate 23.3 1.07E-02 L-Histidine 25.3 6.89E-04

L-Methionine 23.5 6.89E-04 Phenylalanyl-valine 25.3 6.89E-04

L-Asparagine 25.6 6.89E-04 2-Aminobutyrate 27.5 6.89E-04

Creatine 25.6 6.89E-04 L-Threonine 29.4 6.89E-04

Urea 26.2 6.89E-04 Glycine 29.9 6.89E-04

Unk m/z 199.038: rt 591s 27.1 4.53E-03 Creatine 30 6.89E-04

L-Isoleucine 27.1 6.89E-04 3-Oxopentanoic acid 30.8 4.53E-03

Leucine 27.2 6.89E-04 Citric acid 31.8 6.89E-04

L-Glutamic Acid 29.4 6.89E-04 Unk m/z 778.516: rt 650s 37.8 1.30E-03

L-Phenylalanine 32.7 6.89E-04 L-Serine 44.2 6.89E-04
f

AvgRank values represent each features average ranking over all cross-validation folds of the kernel function SVM-RFE. Smaller values indicate better classification towards the query
model. Meal*Time represents the calculated FDR corrected permutation p-value for the metabolite in the LME model. Unk, Unknown metabolites are denoted by m/z, mass charge and rt,
retention time in seconds. Shaded metabolites were recognised within the metabolic network and pathway enrichment databases.
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Metabolic network analysis of
intra-pancreatic fat deposition
model metabolites

Of the 20 top-ranking postprandial WPI response

metabolites separating participants with low IPFD from high

IPFD, 16 had KEGG IDs, of which 13 (Table 2) were processed

for pathway enrichment and metabolic network construction.

IPFD model metabolites constructed a four-component

metabolic network with 454 nodes and 504 edges (Figure 4).

Network centrality identified glycine, L-tyrosine, L-serine, and

L-glutamine as hub nodes based on their measure of degree

(>10) and betweenness centrality (>0.1) (Table 5). ORA

identified three pathways as significant with 13 IPFD

metabolites (Table 6), This included glycine, serine, and

threonine metabolism with five metabolites, glyoxylate and

dicarboxylate metabolism with five metabolites, and

aminoacyl-TRNA biosynthesis with seven metabolites.
Discussion

To the best of our knowledge, this is the first study to model

the postprandial WPI response to determine differences in

metabolomic profiles between ethnic groups and/or groups

with various levels of IPFD. It is also the first reported

comparison of the postprandial metabolome responses
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associated with IPFD and ethnicity as an estimate of

prediabetic risk factors. While most postprandial response

studies measure differences associated with beverage

composition or the capacity of a beverage to elicit a response

(27, 48, 61, 62), this study utilized prior knowledge of WPI

response as a basis for discerning differences between cohorts

likely not apparent when comparing only basal metabolite levels.

Characterizing a metabolic response to a dietary

intervention can determine an individual’s risk of developing a

disease outcome (63). We hypothesized that differences in

postprandial WPI response could provide insight into how

IPFD and/or ethnicity may contribute to adverse metabolic

health outcomes. Therefore, we measured the postprandial

response to WPI in a cohort of overweight women with

prediabetes using untargeted metabolomics. Our aim was to

discern differences in ethnicity- and IPFD-associated biomarkers

following WPI intake. Notably, in the TOFI_Asia study, using

PLS-DA analysis we had previously identified a clear and robust

separation in fasting lipid and polar metabolite profiles that

characterized the two ethnicity cohorts (19). In our current data

set we confirmed this separation through fasting polar

metabolites; 3-methoxytyrosine, dihydrothymine, asymmetric

dimethylarginine, valeric acid, 1-methyl-L-histidine and

succinic acid. Students t-test analysis of these plasma

metabolites identified a significant difference at baseline (T=0)

between ethnicity cohorts, and no temporal response to

increasing doses of WPI. Also of note, we had previously
A B

FIGURE 2

PLS−DA analysis of SVM-RFE metabolome models for Ethnicity cohorts and IPFD classes. PLS−DA score plot (top) and 100 permutation tests
(bottom) showing A) good separation and robust model for SVM-RFE ranked metabolites between Caucasian and Asian Chinese, and B)
moderate separation and predictive modelling for SVM-RFE ranked metabolites between Low and High IPFD. FPD, fatty pancreas disease >
10.4% IPFD).
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identified dihydrothymine, valeric acid and 1-methyl-L-histidine

as significantly different between ethnicity cohorts in the larger

data set of Asian Chinese and European Caucasian men and

women from the TOFI_Asia study (19). The difference in basal

level metabolites between Caucasian and Chinese cohorts

indicates a clear disparity in metabolic pathways. Although
Frontiers in Clinical Diabetes and Healthcare 09
these metabolites may contribute to resistance or susceptibility

to developing T2D, they were omitted from the postprandial

WPI models due to their lack of temporal profile.

We developed a feature selection pipeline that first identified

a set of relevant features by linear mixed effect (LME) modeling

for Meal*Time interactions with the inclusion of participants age
FIGURE 3

Global metabolic network pathways identified with top ranking Ethnicity model metabolites. Nodes correspond to an identified KEGG
compound/gene/reaction, and edges indicate a significant correlation between nodes. Annotated red hexagons represent input metabolites,
pink hexagons represent network metabolites, blue circles represent encoding genes, green quadrangles represent associated enzymes and
grey diamonds represent metabolic reactions. Metabolites in bold are hub metabolites by degree and betweenness centrality measures.
TABLE 3 Topological parameters of key metabolites classifying ethnicity as an SVM-RFE model.

Metabolite Degree Betweenness centrality Pathways

Glycine 27 0.4155 Bile acid biosynthesis. Glycine, serine, alanine, and threonine metabolism. Leukotriene
metabolism. Lysine metabolism. Porphyrin metabolism. Urea cycle and metabolism of
arginine, proline, glutamate, aspartate, and asparagine. Vitamin B9 (folate) metabolism.

L-Glutamate 23 0.4274 Histidine metabolism. Urea cycle and metabolism of arginine, proline, glutamate,
aspartate, and asparagine. Vitamin B9 (folate) metabolism.

L-Phenylalanine 11 0.2803 Tyrosine metabolism. Biopterin metabolism.
The degree of a node is the number of edges associated with it, and the betweenness centrality of a node is the number of shortest communication paths between different pairs of nodes.
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and BMI, then removing LME false positives by incremental area

under the curve-fold change (iAUC-FC) analysis, then

comparing each participant WPI concentration dependent

response to their respective postprandial water control

response. Resulting features were used to model the differences

in WPI response associated with ethnicity (Caucasian and

Chinese) or IPFD (low IPFD and high IPFD) classes through a

SVM-RFE algorithm. SVM-RFE found that the postprandial

WPI metabolome response was most impacted by differences
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associated with ethnicity rather than IPFD, as average ranking

values for metabolites classifying ethnicity as a model were

greater (lower in value) than those for IPFD modelling.

Additionally, the ethnicity model required far less metabolites

to discriminate Caucasian and Chinese participants, than

participants with low or high IPFD. The discriminant power

of these models was confirmed by PLS-DA, where a strong

separation between Caucasian and Chinese participants was

achieved, in agreement with our previous data from the
FIGURE 4

Global metabolic network pathways identified with top ranking IPFD model metabolites. Nodes correspond to an identified KEGG compound/
gene/reaction, and edges indicate a significant correlation between nodes. Annotated red hexagons represent input metabolites, pink hexagons
represent network metabolites, blue circles represent encoding genes, green quadrangles represent associated enzymes and grey diamonds
represent metabolic reactions. Metabolites in bold are hub metabolites by degree and betweenness centrality measures.
TABLE 4 Metabolic pathway enrichment for ethnicity WPI metabolome response model.

Pathway name Total compound Hits p.Adjusted Impact

Arginine and proline metabolism 38 5 3.77E-03 0.2905

Alanine, aspartate, and glutamate metabolism 28 4 0.018 0.2837

Arginine biosynthesis 14 4 9.87E-04 0.2538
fronti
WPI, whey protein isolate. ‘Total compound’ represents the number of compounds involved in the pathway. ‘Hits’ represents the matched number from the input query metabolites.
‘p.Adjusted’ represents the original p-value calculated from the enrichment analysis adjusted with Holm-Bonferroni corrections. ‘Impact’ represents the cumulative percentage of
importance from pathway topology analysis comparing different pathways.
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TOFI_Asia study (19), while only a moderate separation of IPFD

classes from SVM-RFE ranking metabolites was produced. We

set a threshold of ≥ 4.66% as cut point for high IPFD, based on

the cohort median, which is 0.16% higher than the weighted

mean obtained in a 2017 meta-analysis (38). A value of 10.4% for

IPFD has previously been proposed as the cut point for fatty

pancreas disease (FPD) by Wong et al. (22), based on a large

cohort of Hong Kong Chinese. Whilst differences in MRI

techniques and post scan analysis methods prevents robust

between-study comparison, we note contribution of one

participant in our current cohort with an IPFD value of

12.17% which may represent FPD, and which is presented as a

strong outlier in the IPFD PLS-DA.

Network topology and metabolite enrichment set analysis

(MESA) in our current cohort provided a weighted evaluation of

discriminatory metabolites by their annotated function in

human metabolism; characterizing key network hubs and

enriched metabolic pathways that separate both Caucasians

and Chinese participants, and low IPFD from high IPFD

participants by WPI metabolome response. While both models

enriched different metabolic pathways, central to each ethnicity-

and IPFD-WPI response network was the amino acid glycine.

Considered a semi-essential amino acid, glycine has a key role in

many metabolic pathways, including protein biochemistry,

nitrogen metabolism, bile acid conjugation, and central

nervous system signaling as a neurotransmitter (64). Genome

wide-association studies (GWAS) using both single-nucleotide

polymorphisms (SNPs) and exome sequencing data have linked
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plasma glycine levels to genetic variants in the carbamoyl

phosphate synthase 1 (CPS1) gene, which encodes the rate-

limiting step of the urea cycle (48, 65). This aligns with our

network topology analysis, which identified the urea cycle as a

key metabolic subnetwork from discriminatory metabolites for

ethnicity. This included glycine and glutamic acid as key

network hubs, and urea, arginine, asparagine, glutamic acid,

ornithine, and 4-aminobutyric acid as contributing urea network

nodes. The most impacted pathway discriminating Caucasians

from Chinese was arginine and proline metabolism which is

fundamental to urea production from arginine via arginase-1

activity (66). The representation of urea cycle metabolites among

the discriminatory model for ethnicity indicates differences in

postprandial ammonia and nitrogen metabolism pathways

between Caucasians and Chinese presented with a

WPI challenge.

A closer look at the glycine profiles within ethnicity and

IPFD cohorts found a prominent depletion of levels relative to

increasing WPI concentration. Though the WPI beverages

contained trace amounts of glycine (0.2 – 0.9 g) (39), it was

apparent that high IPFD participants fed with 12.5 g of WPI

were more sensitive to glycine depletion than participants with

low IPFD. Glycine depletion was also more pronounced in the

Chinese cohort’s response to 50 g or 12.5 g WPI than

Caucasians. These results contrast other postprandial studies,

wherein men or women with a BMI within the healthy range (≤

25 kg/m2) had increased levels of glycine in response to a protein

supplement (48, 65). Interestingly, the BCAAs; valine, leucine,
TABLE 5 Topological parameters of key metabolites classifying IPFD as an SVM-RFE model.

Metabolite Degree Betweenness centrality Pathways

Glycine 27 0.705 Bile acid biosynthesis. Glycine, serine, alanine, and threonine metabolism. Leukotriene
metabolism. Lysine metabolism. Porphyrin metabolism. Urea cycle and metabolism of
arginine, proline, glutamate, aspartate, and asparagine. Vitamin B9 (folate) metabolism.

L-Tyrosine 15 0.4699 Tyrosine metabolism. Biopterin metabolism.

L-Serine 13 0.3081 Glycerophospholipid metabolism. Glycine, serine, alanine and threonine metabolism,
Glycosphingolipid metabolism. Methionine and cysteine metabolism. Vitamin B9
(folate) metabolism.

L-Glutamine 10 0.2181 Amino sugars metabolism. Purine metabolism. Pyrimidine metabolism. Urea cycle and
metabolism of arginine, proline, glutamate, aspartate, and asparagine. Vitamin B3
(nicotinate and nicotinamide) metabolism.
The degree of a node is the number of edges associated with it, and the betweenness centrality of a node is the number of shortest communication paths between different pairs of nodes.
TABLE 6 Metabolic pathway enrichment for IPFD WPI metabolome response model.

Pathway name Total compound Hits p.Adjusted Impact

Glycine, serine and threonine metabolism 33 5 9.71E-04 0.487

Glyoxylate and dicarboxylate metabolism 32 5 8.39E-04 0.2593

Aminoacyl-tRNA biosynthesis 48 7 1.36E-05 0.1667
fronti
Total compound is the number of compounds involved in the pathway. Hits is the matched number from the input query metabolites. p.Adjusted is the original p-value calculated from the
enrichment analysis adjusted with Holm-Bonferroni corrections. Impact value is the cumulative percentage of importance from pathway topology analysis comparing different pathways.
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and isoleucine, were identified as top-ranking metabolites for the

discrimination of ethnicity as a WPI response in women with

prediabetes. Increased BCAAs have been positively associated

with insulin resistance, diabetic nephropathy, and dyslipidemia

in epidemiological studies (67, 68). Furthermore, glycine levels

have been negatively associated with metabolic syndrome,

obesity, and diabetic complications (69–71). By use of the

Zucker-fatty rat (ZFR) and Zucker-lean rat (ZLR) models,

White et al., demonstrated that the raised levels of BCAAs

associated with obesity generates excess levels of ammonia

from increased BCAA transamination, leading to the

recruitment of glycine as a carbon donor for the pyruvate-

alanine cycle (72). Our results indicate that the TOFI

phenotype contributes towards the depletion of glycine more

so than BMI, as the mean BMI of both IPFD cohorts was not

significantly different, but their glycine response differed. The

Chinese cohort, with a mean BMI of 26.9 ± 1.1 had greater

sensitivity to glycine depletion than the Caucasian cohort, whose

mean BMI of 31.4 ± 1.32 was significantly greater.

Although the IPFD model presented glycine within the top-

ranking metabolites, it lacked the ranking of BCAAs as seen within

the ethnicity model. Instead, the IPFD model ranked the aromatic

amino acid tyrosine, whose presence has been an established

biomarker for the exacerbation of insulin dysregulation in

patients with non-alcoholic fatty liver disease (NAFLD) and

diabetic nephropathy (73–76). Interestingly, the most impacted

pathway discriminating low IPFD from high IPFD participants

was glycine, serine, and threonine metabolism, as serine and

threonine are key metabolites involved in the de novo synthesis of

glycine (64), and along with glutamine, which was also ranked with

high IPFD, are all associated with purine metabolism and the

formation of excess uric acid (64, 77, 78). Uric acid was the top-

ranking metabolite discriminating low IPFD participants from high

IPFD through their WPI metabolome response. Commonly

associated with Gout formation in joints, uric acid has long been

considered as an inert end-product from purine degradation (79).

But recent studies have shed light on uric acid as a regulator of key

metabolic signaling pathways; stimulating fat storage and insulin

resistance through adenosine monophosphate (AMP) deaminase,

or promoting fat degradation and the decrease of gluconeogenesis

through AMP activated protein kinase (80–82). While these

attributes were once advantageous during times of food scarcity, it

has been hypothesized that they have become detrimental to

modern humans who lack a functional urate oxidase enzyme,

resulting in higher levels of serum uric acid during an era of

obesity (83). With a decrease in both glycine and serine in

response to WPI, along with increased levels of plasma uric acid

in high IPFD participants, an inappropriate signal of fat storage and

insulin resistance could be perpetuated towards further

metabolic complications.

Two metabolites impacted by WPI that significantly

contributed towards both SVM-RFE models, in particular the

separation of Caucasians from Chinese participants, were
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imidazolelactic acid and N(ϵ)-methyl-lysine. Imidazolelactic acid

is formed from the reduction of imidazole-pyruvate, which

represents a key branch point in the source production of

aspartate from the histidine transaminase pathway in Escherichia

coli (84). N(ϵ)-methyl-lysine is a poorly characterized metabolite,

first detected in small concentrations by chromatographing plasma

from fasting humans (85, 86). Production of N(ϵ)-methyl-lysine

has been reported in Proteus vulgaris bacteria (87). Both

metabolites were higher at basal level within the Caucasian

cohort, with imidazolelactic acid decreasing in response to WPI

concentrations and N(ϵ)-methyl-lysine increasing in response to

WPI. Due to their unique profile of complete separation at basal

level, but with a postprandial WPI response, and absence from the

human metabolic pathway database, we speculate that they are

associated with ethnic differences relating to gut microbiota

profiles, as both Escherichia coli and Proteus vulgaris bacteria

have been associated with the human gastrointestinal

microbiome previously (88).

In conclusion, our study used untargeted metabolomics and

postprandial WPI responses to identify a set of metabolites both

common and disparate between IPFD and ethnicity models, using

SVM-RFE modelling in overweight women with prediabetes. The

discriminant power of these models demonstrated a strong

separation of metabolites between European Caucasian and

Asian Chinese participants, in agreement with our prior data

from the TOFI_Asia study. Network analysis and pathway

enrichments revealed several metabolites of the urea cycle, and

arginine and proline metabolism that could differentiate between

Caucasian and Chinese participants. Previously we identified a

strong association of creatine for the Chinese cohort in our larger

TOFI_Asia study, which was further validated in this study as a

contributing metabolite for the discrimination of both ethnicity

and IPFD WPI metabolome response models. Metabolites of the

glycine, serine, and threonine metabolism were used in the

discrimination of low and high IPFD classes, therefore

implicating purine synthesis and uric acid production with

increased IPFD levels. Betweenness centrality identified glycine

as a key network hub for both ethnicity and IPFD metabolome

networks, representing a difference in contribution towards urea

cycle and uric acid metabolism, respectively. Glycine depletion

was most prominent in the Chinese cohort relative to the

Caucasian cohort, the latter notably with significantly higher

BMI. Furthermore, the high IPFD cohort had a more

prominent glycine depletion profile than the low IPFD cohort,

despite comparable BMI. These results further characterize the

obesity associated postprandial glycine profile established in the

literature, but in addition brings to light the relative contribution

that VAT and ectopic fat deposition have over BMI as an

exacerbator of glycine depletion in a cohort with impaired

fasting glucose. This study identified several unknown features

as potential metabolites, annotated by their respective retention

time and mass charge. These and other metabolites within this

study, such as imidazolelactic acid and N(ϵ)-methyl-lysine, will
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need to be further characterized before they can be considered for

systems biology modelling in future cohorts.
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