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Abstract

Background

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Epidemiological studies have reported conflicting findings on the potential adverse effects of

long-term antihypertensive medication use on cancer risk. Naturally occurring variation in

genes encoding antihypertensive drug targets can be used as proxies for these targets to

examine the effect of their long-term therapeutic inhibition on disease outcomes.

Methods and findings

We performed a mendelian randomization analysis to examine the association between

genetically proxied inhibition of 3 antihypertensive drug targets and risk of 4 common can-

cers (breast, colorectal, lung, and prostate). Single-nucleotide polymorphisms (SNPs) in

ACE, ADRB1, and SLC12A3 associated (P < 5.0 × 10−8) with systolic blood pressure (SBP)

in genome-wide association studies (GWAS) were used to proxy inhibition of angiotensin-

converting enzyme (ACE), β-1 adrenergic receptor (ADRB1), and sodium-chloride sympor-

ter (NCC), respectively. Summary genetic association estimates for these SNPs were

obtained from GWAS consortia for the following cancers: breast (122,977 cases, 105,974

controls), colorectal (58,221 cases, 67,694 controls), lung (29,266 cases, 56,450 controls),

and prostate (79,148 cases, 61,106 controls). Replication analyses were performed in the

FinnGen consortium (1,573 colorectal cancer cases, 120,006 controls). Cancer GWAS and

FinnGen consortia data were restricted to individuals of European ancestry. Inverse-vari-

ance weighted random-effects models were used to examine associations between geneti-

cally proxied inhibition of these drug targets and risk of cancer. Multivariable mendelian

randomization and colocalization analyses were employed to examine robustness of find-

ings to violations of mendelian randomization assumptions. Genetically proxied ACE inhibi-

tion equivalent to a 1-mm Hg reduction in SBP was associated with increased odds of

colorectal cancer (odds ratio (ORAU : PleasenotethatORhasbeendefinedasoddsratioatitsfirstmentionintheAbstractandinthemaintext:Pleasecorrectifnecessary:) 1.13, 95% CI 1.06 to 1.22; P = 3.6 × 10−4). This finding

was replicated in the FinnGen consortium (OR 1.40, 95% CI 1.02 to 1.92; P = 0.035). There

was little evidence of association of genetically proxied ACE inhibition with risk of breast

cancer (OR 0.98, 95% CI 0.94 to 1.02, P = 0.35), lung cancer (OR 1.01, 95% CI 0.92 to

1.10; P = 0.93), or prostate cancer (OR 1.06, 95% CI 0.99 to 1.13; P = 0.08). Genetically

proxied inhibition of ADRB1 and NCC were not associated with risk of these cancers. The

primary limitations of this analysis include the modest statistical power for analyses of drug

targets in relation to some less common histological subtypes of cancers examined and the

restriction of the majority of analyses to participants of European ancestry.

Conclusions

In this study, we observed that genetically proxied long-term ACE inhibition was associated

with an increased risk of colorectal cancer, warranting comprehensive evaluation of the

safety profiles of ACE inhibitors in clinical trials with adequate follow-up. There was little evi-

dence to support associations across other drug target–cancer risk analyses, consistent

with findings from short-term randomized controlled trials for these medications.
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Author summary

Why was this study done?

• Angiotensin-converting enzyme (ACE) inhibitors, beta blockers, and thiazide diuretics

are commonly prescribed antihypertensive medications.

• Some epidemiological studies have suggested that long-term use of these medications

can increase cancer risk, though findings have been conflicting.

• Germline genetic variation in genes encoding drug targets can be used to proxy the

effect of long-term modulation of these targets on disease endpoints (“drug-target men-

delian randomization”).

What did the researchers do and find?

• We used drug-target mendelian randomization to examine the association of genetically

proxied inhibition of the drug targets of ACE inhibitors, beta blockers, and thiazide

diuretics with risk of 4 of the most common adult cancers (breast, colorectal, lung, and

prostate) in up to 289,612 cancer cases and 291,224 controls.

• We found evidence that genetically proxied inhibition of the drug target for ACE inhibi-

tors was associated with an increased risk of colorectal cancer.

• There was little evidence that genetically proxied inhibition of the drug target for ACE

inhibitors was associated with risk of the other cancers examined or evidence for an

association of genetically proxied inhibition of drug targets for beta blockers and thia-

zide diuretics with risk of all 4 cancers examined.

What do these findings mean?

• These findings provide support for a link between long-term inhibition of the drug tar-

get for ACE inhibitors and colorectal cancer risk, highlighting the need to evaluate the

safety profiles of these medications in clinical trials with adequate follow-up length.

• Prior to confirmation of an effect of ACE inhibitor use on colorectal cancer risk in

clinical trials, these findings should not alter clinical practice for ACE inhibitor

prescribing.

Introduction

Angiotensin-converting enzyme (ACE) inhibitors are commonly prescribed antihypertensive

medications [1]. These medications lower blood pressure by inhibiting the conversion of

angiotensin I to angiotensin II, a vasoconstrictor and the primary effector molecule of the

renin–angiotensin system (RAS). Though clinical trials have supported the relative safety of

these medications in the short term (median follow-up of 3.5 years), concerns have been raised

that long-term use of these medications could increase risk of cancer [2,3]. These safety con-

cerns relate to the multifaceted role of ACE, which cleaves various other substrates beyond
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angiotensin I, including several peptides that have proliferative effects. For example, ACE inhi-

bition leads to the accumulation of bradykinin, an inflammatory mediator involved in tumor

growth and metastasis [4]. In addition, substance P is elevated in ACE inhibitor users, which

can promote tumor proliferation, migration, and angiogenesis [5,6].

Some observational epidemiological studies have suggested potential adverse effects of

long-term use of these drugs on risk of common cancers (i.e., breast, colorectal, lung, and pros-

tate) [7–10], though findings have been largely inconsistent (i.e., null and protective associa-

tions have also been reported for the relationship between ACE inhibitor use and cancer risk)

[11–15]. Interpretation of the epidemiological literature is challenging for several reasons.

First, pharmaco-epidemiological studies are susceptible to residual confounding due to

unmeasured or imprecisely measured confounders, including those related to indication [16].

Second, several studies examining ACE inhibitor use and cancer risk have included prevalent

drug users, which can introduce bias because prevalent users are “survivors” of the early period

of pharmacotherapy and because covariates at study entry can be influenced by prior medica-

tion use [12,17–20]. Third, some prior studies may have suffered from time-related biases,

including immortal time bias, which can arise because of misalignment of the start of follow-

up, eligibility, and treatment assignment of participants [17,18,20,21]. These biases can pro-

duce illusory results in favor of the treatment group, while other biases often pervasive in the

pharmaco-epidemiological literature (e.g., detection bias due to more intensive clinical moni-

toring and testing of individuals receiving treatment) can alternatively generate upward-biased

effect estimates among those receiving treatment.

Along with ACE inhibitors, β blockers and thiazide diuretics are commonly prescribed

antihypertensive medications that lower blood pressure through pathways independent to that

of ACE (i.e., β blockers bind to β-adrenergic receptors, inhibiting the binding of norepineph-

rine and epinephrine to these receptors; thiazide diuretics promote sodium and water excre-

tion by inhibiting sodium reabsorption in renal tubules) [4]. Some in vitro and

epidemiological studies have suggested potential chemopreventive effects of these medications

on cancer risk, though findings have been inconclusive [22–30].

Naturally occurring variation in genes encoding antihypertensive drug targets can be used

as proxies for these targets to examine the effect of their therapeutic inhibition on disease out-

comes (“mendelian randomization”) [31,32]. Such an approach should be less prone to con-

ventional issues of confounding as germline genetic variants are randomly assorted at meiosis.

In addition, mendelian randomization analysis permits the effect of long-term modulation of

drug targets on cancer risk to be examined. Drug-target mendelian randomization can there-

fore be used to mimic the effect of pharmacologically modulating a drug target in clinical trials

and has been used previously to anticipate clinical benefits and adverse effects of therapeutic

interventions [33–36].

We used a mendelian randomization approach to examine the effect of long-term inhibi-

tion of the drug targets for ACE inhibitors (ACE; angiotensin-converting enzyme), β blockers

(ADRB1; beta-1 adrenergic receptor), and thiazide diuretic agents (NCC; sodium-chloride

symporter) on risk of overall and subtype-specific breast, colorectal, lung, and prostate cancer.

Methods

Study populations

For primary analyses, summary genetic association data were obtained from 4 cancer genome-

wide association study (GWAS) consortia. Summary genetic association estimates for overall

and estrogen receptor (ER)–stratified breast cancer risk in up to 122,977 cases and 105,974

controls were obtained from the Breast Cancer Association Consortium (BCAC) [37].
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Summary genetic association estimates for overall and site-specific colorectal cancer risk in up

to 58,221 cases and 67,694 controls were obtained from an analysis of the Genetics and Epide-

miology of Colorectal Cancer Consortium (GECCO), ColoRectal Transdisciplinary Study

(CORECT), and Colon Cancer Family Registry (CCFR) [38]. Summary genetic association

estimates for overall and histological subtype-stratified lung cancer risk in up to 29,266 cases

and 56,450 controls were obtained from an analysis of the Integrative Analysis of Lung Cancer

Risk and Etiology (INTEGRAL) team of the International Lung Cancer Consortium (ILCCO)

[39]. Summary genetic association estimates for overall and advanced prostate cancer risk in

up to 79,148 cases and 61,106 controls were obtained from the Prostate Cancer Association

Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consor-

tium [40]. These analyses were restricted to participants of European ancestry.

For replication analyses, summary genetic association data were obtained on 1,573 colorec-

tal cancer cases and 120,006 controls of European ancestry from the Finngen consortium. We

also examined whether findings could be extended to individuals of East Asian ancestry by

obtaining summary genetic association data on 23,572 colorectal cancer cases and 48,700 con-

trols of East Asian ancestry from a GWAS meta-analysis of the Asia Colorectal Cancer Consor-

tium and the Korean National Cancer Center CRC Study 2 [41].

Further information on statistical analysis, imputation, and quality control measures for

these studies is available in the original publications. All studies contributing data to these

analyses had the relevant institutional review board approval from each country, in accordance

with the Declaration of Helsinki, and all participants provided informed consent.

Instrument construction

To generate instruments to proxy ACE, ADRB1, and NCC inhibition, we pooled summary

genetic association data from 2 previously published GWAS of systolic blood pressure (SBP)

using inverse-variance weighted fixed-effects models in METAL [42]. The first GWAS was a

meta-analysis of�757,601 individuals of European descent in the UK Biobank and Interna-

tional Consortium of Blood Pressure-Genome Wide Association Studies (ICBP) [43]. The sec-

ond GWAS was performed in 99,785 individuals in the Genetic Epidemiology Research on

Adult Health and Aging (GERA) cohort, of whom the majority (81.0%) were of European

ancestry [44]. Both GWAS were adjusted for age, sex, body mass index (BMI), and antihyper-

tensive medication use. Estimates that were genome-wide significant (P< 5.0 × 10−8) in

pooled analyses (N� 857,386) and that showed concordant direction of effect across both

GWAS were then used to generate instruments.

To proxy ADRB1 inhibition, 8 single-nucleotide polymorphisms (SNPs) associated with

SBP at genome-wide significance and within ±100 kb windows from ADRB1 were obtained.

To proxy NCC inhibition, 1 SNP associated with SBP at genome-wide significance and within

a ±100-kb window from SLC12A3 (alias for NCC) was obtained. For both of these drug targets,

SNPs used as proxies were permitted to be in weak linkage disequilibrium (r2 < 0.10) with

each other to increase the proportion of variance in each respective drug target explained by

the instrument, maximizing instrument strength.

Since pooled GWAS estimates were obtained from analyses adjusted for BMI, which could

induce collider bias, we also examined constructing instruments using summary genetic asso-

ciation data from a previous GWAS of SBP in 340,159 individuals in UK Biobank without

adjustment for BMI or antihypertensive medication use (S1 Table) [45].

We explored construction of genetic instruments to proxy ACE inhibition using 2

approaches: (i) by obtaining genome-wide significant variants in weak linkage disequilibrium

(r2 < 0.10) in or within ±100 kb from ACE that were associated with SBP in previously
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described pooled GWAS analyses (resulting in 2 SNPs); and (ii) by obtaining genome-wide

significant variants in weak linkage disequilibrium (r2 < 0.10) in or within ±100 kb from ACE
that were associated with serum ACE concentrations in a GWAS of 4,174 participants in the

Outcome Reduction with Initial Glargine INtervention (ORIGIN) study (resulting in 14

SNPs) [46]. Approximately 46.6% of participants in the ORIGIN study were of European

ancestry, and 53.4% were of Latin American ancestry. Effect allele frequencies for these 14

SNPs were broadly similar across both ancestries (S2 Table). We then compared the propor-

tion of variance in either SBP or serum ACE concentrations explained (r2) across each respec-

tive instrument to prioritize the primary instrument to proxy ACE inhibition. The “serum

ACE concentrations instrument” (r2 = 0.34 to 0.39, F = 2,156.5 to 2,594.9) was prioritized as

our primary instrument to examine genetically proxied ACE inhibition because of stronger

instrument strength as compared to the “SBP instrument” (r2 = 0.02, F = 128.5). In sensitivity

analyses, we also examined the association between genetically proxied ACE inhibition and

cancer endpoints using the “SBP instrument.”

As an additional instrument construction step, we also performed a post hoc comparison of

the proportion of variance in serum ACE concentrations explained by both instruments and

found that the serum ACE concentrations instrument explained a larger proportion of the var-

iance in this trait than the SBP instrument (r2 = 0.28, F = 759.9).

To validate the serum ACE concentrations instrument, we examined the association

between genetically proxied ACE inhibition and (i) SBP; (ii) risk of stroke in the MEGA-

STROKE consortium (40,585 cases; 406,111 controls of European ancestry); (iii) risk of coro-

nary artery disease in the CARDIoGRAMplusC4D consortium (60,801 cases; 123,504 controls,

77% of whom were of European ancestry); and (iv) risk of type 2 diabetes in the DIAGRAM

consortium (N = 74,124 cases; 824,006 controls of European ancestry) and compared the

direction of effect estimates obtained with those reported for ACE inhibitor use in meta-analy-

ses of randomized controlled trials [47–49]. Likewise, we validated ADRB1 and NCC instru-

ments by examining the association between inhibition of these targets and risk of stroke and

coronary artery disease, as reported in meta-analyses of clinical trials [49].

For analyses in individuals of East Asian ancestry, 1 cis-acting variant (rs4343) associated

with ACE activity (P = 3.0 × 10−25) in a GWAS of 623 individuals with young onset hyperten-

sion of Han Chinese descent was obtained [50]. In the Japanese Biobank (N = 136,597), the A

allele of rs4343 has previously been shown to associate with lower SBP (−0.26 mm Hg SBP,

95% CI −0.11 to −0.42; P = 6.7 × 10−4) [51]. This variant explained 0.008% of the variance of

SBP (F = 11.6).

Mendelian randomization primary and sensitivity analyses

Inverse-variance weighted random-effects models (permitting heterogeneity in causal esti-

mates) were employed to estimate causal effects of genetically proxied drug target inhibition

on cancer risk [52]. These models were adjusted for weak linkage disequilibrium between

SNPs (r2 < 0.10) with reference to the 1,000 Genomes Phase 3 reference panel [53,54]. If

underdispersion in causal estimates generated from individual genetic variants was present,

the residual standard error was set to 1.

Mendelian randomization analysis assumes that the genetic instrument used to proxy a

drug target (i) is associated with the drug target (“relevance”); (ii) does not share a common

cause with the outcome (“exchangeability”); and (iii) affects the outcome only through the

drug target (“exclusion restriction”).

We tested the “relevance” assumption by generating estimates of the proportion of variance

of each drug target explained by the instrument (r2) and F-statistics. F-statistics can be used to
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examine whether results are likely to be influenced by weak instrument bias, i.e., reduced sta-

tistical power when an instrument explains a limited proportion of the variance in a drug tar-

get. As a convention, an F-statistic of at least 10 is indicative of minimal weak instrument bias

[55].

We evaluated the “exclusion restriction” assumption by performing various sensitivity anal-

yses. First, we performed colocalization to examine whether drug targets and cancer endpoints

showing nominal evidence of an association in MR analyses (P< 0.05) share the same causal

variant at a given locus. Such an analysis can permit exploration of whether drug targets and

cancer outcomes are influenced by distinct causal variants that are in linkage disequilibrium

with each other, indicative of horizontal pleiotropy (an instrument influencing an outcome

through pathways independent to that of the exposure), a violation of the exclusion restriction

criterion [56]. Colocalization analysis was performed by generating ±300 kb windows from the

top SNP used to proxy each respective drug target. As a convention, a posterior probability of

�0.80 was used to indicate support for a configuration tested. An extended description of

colocalization analysis including assumptions of this method is presented in S1 Methods.

For analyses showing evidence of colocalization across drug target and cancer endpoint sig-

nals, we then examined whether there was evidence of an association of genetically proxied

inhibition of that target with previously reported risk factors for the relevant cancer endpoint

(i.e., BMI, low-density lipoprotein cholesterol, total cholesterol, iron, insulin-like growth factor

1, alcohol intake, standing height, and physical activity for colorectal cancer risk) [57–65]. If

there was evidence for an association between a genetically proxied drug target and previously

reported risk factor (P< 0.05), this could reflect vertical pleiotropy (i.e. “mediated pleiotropy”

where an instrument has an effect on 2 or more traits that influence an outcome via the same

biological pathway) or horizontal pleiotropy. In the presence of an association with a previ-

ously reported risk factor, multivariable mendelian randomization can then be used to exam-

ine the association of drug target inhibition in relation to cancer risk, accounting for this risk

factor [45].

As an additional post hoc sensitivity analysis, we also evaluated whether SNPs used to

instrument ADRB1 and NCC inhibition were also expression quantitative trait loci (eQTLs)

for the genes encoding these proteins. Instrument validation and cancer endpoint mendelian

randomization analyses were then repeated by restricting instruments to SNPs showing evi-

dence of being eQTLs for these targets (Additional information on these sensitivity analyses is

provided in S2 Methods).

Finally, iterative leave-one-out analysis was performed iteratively removing 1 SNP at a time

from instruments to examine whether findings were driven by a single influential SNP.

To account for multiple testing across primary drug target analyses, a Bonferroni correction

was used to establish a P value threshold of<0.0014 (false positive rate = 0.05/36 statistical

tests [3 drug targets tested against 12 cancer endpoints]), which we used as a heuristic to define

“strong evidence,” with findings between P� 0.0014 and P< 0.20 defined as “weak evidence.”

Colon transcriptome-wide GRS analysis

To explore potential mechanisms governing associations and to further evaluate potential vio-

lations of mendelian randomization assumptions, we examined associations between a genetic

risk score for serum ACE concentrations and gene expression profiles in normal (i.e., nonneo-

plastic) colon tissue samples. Gene expression analysis was performed using data from the

University of Barcelona and the University of Virginia Genotyping and RNA Sequencing Proj-

ect (BarcUVa-Seq) [66]. This analysis was restricted to 445 individuals (mean age 60 years,

64% female, 95% of European ancestry) who participated in a Spanish colorectal cancer risk
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screening program that obtained a normal colonoscopy result (i.e., macroscopically normal

colon tissue, with no malignant lesions). Further information on RNA-Seq data processing

and quality control is presented in S3 Methods.

To perform transcriptome-wide analyses, weighted genetic risk scores (wGRS) to proxy

serum ACE concentrations were constructed using 14 ACE SNPs in Plink v1.9 [67]. Expres-

sion levels for 21,482 genes (expressed as inverse normal transformed trimmed mean of M-val-

ues) were regressed on the standardized wGRS and adjusted for sex, the top 2 principal

components of genetic ancestry, sequencing batch, probabilistic estimation of expression

residuals (PEER) factors, and colon anatomical location. To account for multiple testing, a

Bonferroni correction was used to establish a P value threshold of<2.33 × 10−6 (false positive

rate = 0.05/21,482 statistical tests).

Bioinformatic follow-up of findings from transcriptome-wide analysis was performed to

further interrogate downstream perturbations of the ACE wGRS on gene expression profiles

using gene set enrichment analysis and coexpression network analysis. In brief, these methods

can either evaluate whether expression levels of genes associated with the ACE wGRS are

enriched in relation to an a priori defined set of genes based on curated functional annotation

(gene set enrichment analysis) or permit the identification of clusters of genes (termed “mod-

ules” and assigned arbitrary color codes), which show a coordinated expression pattern associ-

ated with the wGRS (coexpression network analysis). Further information on gene set

enrichment and coexpression network analysis is presented in S4 Methods.

There was no formal prespecified protocol for this study. All analyses described above were

decided a priori except those designated as “post hoc” where additional sensitivity analyses were

performed in response to peer review comments. This study is reported as per the Guidelines

for strengthening the reporting of mendelian randomization studies (STROBE-MR) checklist

(S1 STROBE Checklist) [68]. All statistical analyses were performed using R version 3.3.1.

Results

Across the 3 drug targets that we examined, conservative estimates of F-statistics for their

respective genetic instruments ranged from 269.1 to 2,156.5, suggesting that our analyses were

unlikely to suffer from weak instrument bias. Characteristics of genetic variants in ACE,

ADRB1, and SLC12A3 used to proxy each pharmacological target are presented in Table 1.

Estimates of r2 and F-statistics for each target are presented in S3 Table.

Instrument validation

Findings from genetic instrument validation analyses for drug targets were broadly concor-

dant (i.e., in direction of effect) with findings from meta-analyses of randomized trials for

these medications. Genetically proxied ACE inhibition was associated with lower SBP (mm

Hg per SD lower serum ACE concentration: −0.40, 95% CI −0.21 to −0.59, P = 4.2 × 10−5) and

a lower risk of type 2 diabetes (odds ratio (OR) equivalent to 1 mm Hg lower SBP: 0.90, 95%

CI 0.85 to 0.95, P = 1.3 × 10−4). There was weak evidence for an association of genetically prox-

ied ACE inhibition with lower risk of stroke (OR 0.94, 95% CI 0.88 to 1.01; P = 0.06) and coro-

nary artery disease (OR 0.95, 95% CI 0.89 to 1.02; P = 0.16).

Genetically proxied ADRB1 inhibition was associated with lower risk of coronary artery

disease (per 1 mm Hg lower SBP: OR 0.95, 95% CI 0.92 to 0.98; P = 1.5 × 10−3) and weakly

associated with risk of stroke (OR 1.03, 95% CI 0.99 to 1.07; P = 0.18).

Genetically proxied NCC inhibition was associated with lower risk of coronary artery dis-

ease (per 1 mm Hg lower SBP: OR 0.81, 95% CI 0.81, 95% CI 0.71 to 0.93, P = 3.2 × 10−3) and

was weakly associated with lower risk of stroke (OR 0.89, 95% CI 0.78 to 1.02; P = 0.10).
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Genetically proxied ACE inhibition and cancer risk

Genetically proxied ACE inhibition was associated with an increased odds of colorectal cancer

(OR equivalent to 1 mm Hg lower SBP: 1.13, 95% CI 1.06 to 1.22; P = 3.6 × 10−4). Likewise, in

analyses using SBP SNPs in ACE, genetically proxied SBP lowering via ACE inhibition was

associated with an increased odds of colorectal cancer (OR equivalent to 1 mm Hg lower SBP:

1.11, 95% CI 1.04 to 1.18; P = 1.3 × 10−3). When scaled to represent SBP lowering achieved in

clinical trials of ACE inhibitors for primary hypertension (equivalent to 8 mm Hg lower SBP),

this represents an OR of 2.74 (95% CI 1.58 to 4.76) [69]. In site-specific analyses, this associa-

tion was stronger for colon cancer risk (OR 1.18, 95% CI 1.07 to 1.31; P = 9.7 × 10−4) than rec-

tal cancer risk (OR 1.07, 95% CI 0.97 to 1.18; P = 0.16). Similar associations were found across

risk of proximal colon cancer (OR 1.23, 95% CI 1.10 to 1.37; P = 1.9 × 10−4) and distal colon

cancer (OR 1.15, 95% CI 1.03 to 1.27; P = 0.01).

Table 1. Characteristics of SBP lowering genetic variants in ACE, ADRB1, and SLC12A3.

Target Effect allele/Noneffect Allele Effect Allele Frequency Effect (SE) P value

ACE
rs4343 A/G 0.45 −0.63 (0.02) 1.53 × 10−213

rs12452187 A/G 0.60 −0.23 (0.02) 2.53 × 10−27

rs79480822 C/T 0.93 −0.55 (0.05) 6.37 × 10−24

rs3730025 G/A 0.01 −0.80 (0.09) 4.32 × 10−19

rs11655956 C/G 0.08 −0.35 (0.04) 1.06 × 10−15

rs118121655 G/A 0.96 −0.54 (0.07) 3.10 × 10−15

rs4365 G/A 0.97 −0.58 (0.08) 7.06 × 10−12

rs4968771 G/A 0.08 −0.22 (0.03) 1.78 × 10−11

rs12150648 G/A 0.96 −0.39 (0.06) 1.88 × 10−10

rs80311894 T/G 0.97 −0.46 (0.07) 2.60 × 10−10

rs118138685 C/G 0.04 −0.40 (0.07) 2.44 × 10−9

rs13342595 C/T 0.23 −0.14 (0.02) 2.48 × 10−9

rs28656895 T/C 0.23 −0.14 (0.02) 3.77 × 10−9

rs4968780 C/A 0.05 −0.28 (0.05) 1.86 × 10−8

ADRB1
rs1801253 G/C 0.23 −0.41 (0.03) 8.07 × 10−43

rs11196549 G/A 0.96 −0.62 (0.07) 2.53 × 10−19

rs4918889 G/C 0.17 −0.30 (0.04) 7.53 × 10−18

rs460718 A/G 0.33 −0.24 (0.03) 2.21 × 10−17

rs11196597 G/A 0.86 −0.27 (0.04) 3.07 × 10−12

rs143854972 G/A 0.94 −0.39 (0.06) 4.35 × 10−11

rs17875473 C/T 0.91 −0.28 (0.05) 9.04 × 10−9

rs10787510 A/G 0.48 −0.15 (0.03) 2.01 × 10−8

NCC
rs35797045 A/C 0.05 −0.35 (0.06) 4.85 × 10−8

Effect (SE) represents change in serum ACE concentrations per additional copy of the effect allele for ACE analysis and change in SBP per additional copy of the effect

allele for ADRB1 and NCC analyses. In analyses of genetically proxied ACE inhibition and colorectal cancer risk, 1 SNP (rs8064760) was not available in the colorectal

cancer dataset. Two SNPs associated with SBP used to proxy ACE inhibition in sensitivity analyses were as follows: rs8077276 (effect allele/noneffect allele: A/G, effect

(se): −0.27 (0.03), effect allele frequency: 0.62; P value: 4.47 × 10−22) and rs28656895 (effect allele/noneffect allele: T/C, effect (se): −0.19 (0.03), effect allele frequency:

0.23; P value: 3.37 × 10−9).

ACEAU : AbbreviationlistshavebeencompiledforthoseusedinTables1 � 4:Pleaseverifythatallentriesarecorrect:, angiotensin-converting enzyme; ADRB1, β-1 adrenergic receptor; NCC, sodium-chloride symporter; SBP, systolic blood pressure; SNP, single-nucleotide

polymorphism.

https://doi.org/10.1371/journal.pmed.1003897.t001
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Colocalization analysis suggested that serum ACE and colorectal cancer associations had a

91.4% posterior probability of sharing a causal variant within the ACE locus (S4 Table).

Regional Manhattan plots examining the association of all SNPs ±300 kb from the top SNP for

serum ACE concentrations (rs4343) for their association with serum ACE concentrations (Fig

1) and with colorectal cancer risk (Fig 2) did not appear to support the presence of 2 or more

independent causal variants driving associations across either trait.

In mendelian randomization analyses examining the association of genetically proxied

ACE inhibition with 8 previously reported colorectal cancer risk factors, there was little evi-

dence to support associations (S5 Table). There was also little evidence to support an associa-

tion of genetically proxied SBP with colorectal cancer risk (OR per 1 mmHg lower SBP: 1.00,

95% CI 0.99 to 1.01; P = 0.50), suggesting a potential mechanism-specific effect of this drug tar-

get on colorectal cancer risk.

Additionally, results of analyses that iteratively removed one SNP at a time from the instru-

ment and recalculated the overall mendelian randomization estimate were consistent, suggest-

ing that associations were not being driven through individual influential SNPs (S6 Table).

There was little evidence that genetically proxied ACE inhibition was associated with risk of

breast cancer (OR 0.98, 95% CI 0.94 to 1.02; P = 0.35) or lung cancer (OR 1.01, 95% CI 0.92 to

1.10; P = 0.93) and weak evidence for an association with prostate cancer risk (OR 1.06, 95%

CI 0.99 to 1.13; P = 0.08). Likewise, there was little evidence of association of genetically prox-

ied ACE inhibition with these cancers in histological subtype-stratified analyses (Table 2).

Fig 1. Regional Manhattan plot of associations of SNPs with serum ACE concentrations ±300 kb from the SNP used to proxy serum ACE

concentrations (rs4343) in the ACE region. ACEAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1 � 8:Pleaseverifythatallentriesarecorrect:, angiotensin-converting enzyme; Mb, Megabase; SNP, single-nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1003897.g001
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Fig 2. Regional Manhattan plot of associations of SNPs with colorectal cancer risk ±300 kb from the SNP used to proxy serum ACE

concentrations (rs4343) in the ACE region. ACE, angiotensin-converting enzyme; Mb, Megabase; SNP, single-nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1003897.g002

Table 2. Association between genetically proxied ACE inhibition and risk of overall and subtype-specific breast, colorectal, prostate, and lung cancer risk.

Outcome N (cases, controls) OR (95% CI) P value

Breast cancer 122,977; 105,974 0.98 (0.94–1.02) 0.35

ER+ Breast cancer 69,501; 105,974 0.99 (0.94–1.04) 0.76

ER− Breast cancer 21,468; 105,974 0.97 (0.90–1.05) 0.47

Colorectal cancer 58,221; 67,694 1.13 (1.06–1.22) 3.6 × 10−4

Colon cancer 32,002; 64,159 1.18 (1.07–1.31) 9.7 × 10−4

Rectal cancer 16,212; 64,159 1.07 (0.97–1.18) 0.16

Lung cancer 29,863; 55,586 1.01 (0.92–1.10) 0.93

Lung adenocarcinoma 11,245; 54,619 1.02 (0.91–1.15) 0.70

Small cell lung carcinoma 2,791; 20,580 0.96 (0.76–1.20) 0.71

Squamous cell lung cancer 7,704; 54,763 0.97 (0.81–1.16) 0.73

Prostate cancer 79,148; 61,106 1.06 (0.99–1.13) 0.08

Advanced prostate cancer 15,167; 58,308 1.05 (0.94–1.17) 0.37

ACE, angiotensin-converting enzyme; CI, confidence interval; ER, estrogen receptor; OR, odds ratio, SBP, systolic blood pressure.

OR represents the exponential change in odds of cancer per genetically proxied inhibition of ACE equivalent to a 1-mm Hg decrease in SBP.

https://doi.org/10.1371/journal.pmed.1003897.t002
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Genetically proxied ADRB1 inhibition and cancer risk

There was little evidence that genetically proxied ADRB1 inhibition was associated with overall

risk of breast, colorectal, lung, or prostate cancer (Table 3). In lung cancer subtype-stratified

analyses, there was weak evidence to suggest an association of genetically proxied ADRB1 inhi-

bition with lower risk of small cell lung carcinoma (OR equivalent to 1 mm Hg lower SBP:

0.87, 95% CI 0.79 to 0.96; P = 0.008). Colocalization analysis suggested that ADRB1 and small

cell lung carcinoma were unlikely to share a causal variant within the ADRB1 locus (1.5% pos-

terior probability of a shared causal variant) (S7 Table, Figs 3 and 4). Findings for overall and

subtype-specific cancer risk did not differ markedly when using an instrument for ADRB1

inhibition constructed from a GWAS unadjusted for BMI (S8 Table). In sensitivity analyses

restricting the ADRB1 instrument to SNPs that are eQTLs for ADRB1, findings were consis-

tent with those obtained when using the primary instrument for this target (S10 Table).

Genetically proxied NCC inhibition and cancer risk

There was little evidence that genetically proxied NCC inhibition was associated with overall

risk of breast, colorectal, lung, or prostate cancer (Table 4). In ER–stratified breast cancer anal-

yses, there was weak evidence that NCC inhibition was associated with an increased risk of ER

− breast cancer (OR equivalent to 1 mm Hg lower SBP: 1.20, 95% CI 1.02 to 1.40; P = 0.03).

Colocalization analysis provided little support for NCC and ER− breast cancer association

sharing a causal variant within the SLC12A3 locus (11.5% posterior probability of a shared

causal variant) (S11 Table, Figs 5 and 6).

Replication analysis in Europeans and exploratory analysis in East Asians

Findings for genetically proxied ACE inhibition and colorectal cancer risk were replicated in

an independent sample of 1,571 colorectal cancer cases and 120,006 controls of European

ancestry in the Finngen consortium (1.40, 95% CI 1.02 to 1.92; P = 0.035). In analyses of

23,572 colorectal cancer cases and 48,700 controls of East Asian descent, there was little

Table 3. Association between genetically proxied ADRB1 inhibition and risk of overall and subtype-specific

breast, colorectal, prostate, and lung cancer risk.

Outcome N (cases, controls) OR (95% CI) P value

Breast cancer 122,977; 105,974 1.01 (0.99–1.04) 0.38

ER+ Breast cancer 69,501; 105,974 1.01 (0.98–1.04) 0.44

ER− Breast cancer 21,468; 105,974 0.98 (0.94–1.02) 0.38

Colorectal cancer 58,221; 67,694 0.98 (0.96–1.01) 0.31

Colon cancer 32,002; 64,159 0.99 (0.95–1.03) 0.63

Rectal cancer 16,212; 64,159 1.00 (0.95–1.04) 0.84

Lung cancer 29,863; 55,586 1.01 (0.96–1.07) 0.64

Lung adenocarcinoma 11,245; 54,619 0.98 (0.91–1.04) 0.48

Small cell lung carcinoma 2,791; 20,580 0.87 (0.79–0.96) 0.008

Squamous cell lung cancer 7,704; 54,763 0.98 (0.91–1.06) 0.67

Prostate cancer 79,148; 61,106 1.00 (0.96–1.03) 0.73

Advanced prostate cancer 15,167; 58,308 1.00 (0.94–1.06) 0.97

ADRB1, β-1 adrenergic receptor; CI, confidence interval; ER, estrogen receptor; OR, odds ratio, SBP, systolic blood

pressure.

OR represents the exponential change in odds of cancer per genetically proxied inhibition of ADRB1 equivalent to a

1-mm Hg decrease in SBP.

https://doi.org/10.1371/journal.pmed.1003897.t003
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evidence of association of genetically proxied ACE inhibition and colorectal cancer risk (OR

0.97, 95% CI 0.88 to 1.07; P = 0.59).

Colon gene expression analysis

In transcriptome-wide analyses, the serum ACE wGRS was most strongly associated with ACE
expression levels in the colon (trimmed mean of M-values [TMMs] per SD increase in wGRS:

−0.42, 95% CI −0.49 to −0.36; P = 2.29 × 10−31). Genetically proxied ACE expression in the

colon was associated with increased odds of colorectal cancer (OR per SD increase in expres-

sion: 1.02, 95% CI 1.00 to 1.04; P = 0.01). However, colocalization analysis suggested that

colon ACE expression and colorectal cancer risk were unlikely to share a causal variant within

the ACE locus (29.1% posterior probability of a shared causal variant) (S12 Table, Figs 7 and

8). The serum ACE wGRS was also associated with expression levels of CYB561 (TMMs per

SD increase in wGRS: −0.17, 95% CI −0.21 to −0.12; P = 8.28 × 10−11) and FTSJ3 (TMMs per

SD increase in wGRS: −0.19, 95% CI −0.24 to −0.13; P = 2.95 × 10−10) in the colon after correc-

tion for multiple testing. ACE, CYB561, and FTSJ3 are neighboring genes on chromosome 17,

suggesting that associations between the ACE wGRS and CYB561 and FTSJ3 could be driven

through their coexpression. Genetically proxied CYB561 expression in the colon was associ-

ated with increased odds of colorectal cancer (OR per SD increase in expression: 1.06, 95% CI

1.02 to 1.10; P = 0.005). However, multivariable mendelian randomization analysis examining

the association of genetically proxied ACE inhibition with colorectal cancer risk adjusting for

Fig 3. Regional Manhattan plot of associations of SNPs with SBP ±300 kb from the SNP used to proxy SBP (rs1801253) in the ADRB1
region. Mb, Megabase; SBP, systolic blood pressure; SNP, single-nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1003897.g003
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Fig 4. Regional Manhattan plot of associations of SNPs with small cell lung carcinoma risk ±300 kb from the SNP used to proxy SBP

(rs1801253) in the ADRB1 region. Mb, Megabase; SBP, systolic blood pressure; SNP, single-nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1003897.g004

Table 4. Association between genetically proxied NCC inhibition and risk of overall and subtype-specific breast,

colorectal, prostate, and lung cancer risk.

Outcome N (cases, controls) OR (95% CI) P value

Breast cancer 122,977; 105,974 1.08 (0.99–1.18) 0.08

ER+ Breast cancer 69,501; 105,974 1.06 (0.95–1.18) 0.28

ER− Breast cancer 21,468; 105,974 1.20 (1.02–1.40) 0.03

Colorectal cancer 58,221; 67,694 1.09 (0.96–1.23) 0.19

Colon cancer 32,002; 64,159 1.03 (0.89–1.19) 0.69

Rectal cancer 16,212; 64,159 1.13 (0.94–1.36) 0.20

Lung cancer 29,863; 55,586 1.09 (0.89–1.33) 0.38

Lung adenocarcinoma 11,245; 54,619 1.01 (0.81–1.26) 0.95

Small cell lung carcinoma 2,791; 20,580 1.12 (0.76–1.53) 0.57

Squamous cell lung cancer 7,704; 54,763 1.00 (0.78–1.29) 0.99

Prostate cancer 79,148; 61,106 1.08 (0.96–1.19) 0.18

Advanced prostate cancer 15,167; 58,308 1.05 (0.86–1.28) 0.63

CI, confidence interval; ER, estrogen receptor; NCC, sodium-chloride symporter; OR, odds ratio, SBP, systolic blood

pressure.

OR represents the exponential change in odds of cancer per genetically proxied inhibition of NCC equivalent to a

1-mm Hg decrease in SBP.

https://doi.org/10.1371/journal.pmed.1003897.t004
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CYB561 expression in the colon was consistent with univariable analyses (OR 1.13, 95% CI:

0.96 to 1.32; P = 0.14). Genetically proxied FTSJ3 expression in the colon was not associated

with odds of colorectal cancer (OR per SD increase in expression: 1.00, 95% CI 0.98 to 1.03;

P = 0.77).

In gene set enrichment analysis of genes whose expression was associated with the serum

ACE wGRS (P< 5.0 × 10−3), there was evidence for enrichment of expression of genes relating

to memory CD8 T cells (as compared to effector CD8 T cells) in the immunologic signatures

database (GSE10239) (P = 1.35 × 10−6) but little evidence for expression of other gene sets or

pathways after correction for multiple testing.

In coexpression network analysis, 30 distinct modules were defined. ACE was in the black

module along with another 659 genes. This module was correlated with the ACE wGRS (r =

−0.11; P = 0.03). Gene set enrichment analysis of genes located in the black module showed

evidence of enrichment in susceptibility genes for colorectal cancer (P = 1.00 × 10−3).

Complete findings from transcriptome-wide GRS and gene set enrichment analyses, along

with genes from the black module from coexpression network analysis are presented in S11–

S14 Tables.

Discussion

In this mendelian randomization analysis of up to 289,612 cancer cases and 291,224 controls,

genetically proxied long-term ACE inhibition was associated with an increased risk of

Fig 5. Regional Manhattan plot of associations of SNPs with SBP ±300 kb from the SNP used to proxy SBP (rs35797045) in the SLC12A3
region. Mb, Megabase; SBP, systolic blood pressure; SNP, single-nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1003897.g005
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colorectal cancer. This association was restricted to cancer of the colon, with similar associa-

tions across the proximal and distal colon. There was little evidence to support associations of

genetically proxied ACE inhibition with risk of other cancers. Genetically proxied ADRB1 and

NCC inhibition were not associated with risk of breast, colorectal, lung or prostate cancer.

Our findings for genetically proxied ACE inhibition and colorectal cancer risk are not con-

sistent with some previous conventional observational analyses. A meta-analysis of 7 observa-

tional studies reported a protective association of ACE inhibitor use with colorectal cancer risk

(OR 0.81 95% CI 0.70 to 0.92), though with substantial heterogeneity across studies (I2 =

71.1%) [14]. Interpretation of these findings is complicated by variable use of prevalent drug

users, heterogenous comparator groups (both active controls and nondrug users), and the

potential for immortal time bias across most included studies. Further, this meta-analysis did

not include data from an earlier large Danish population-based case–control analysis with

15,560 colorectal cancer cases and 62,525 controls, which reported an increased risk of colo-

rectal cancer (OR 1.30, 95% CI 1.22 to 1.39) among long-term users of ACE inhibitors (�1,000

daily doses within 5 years of study entry), as compared to never-users [7].

The potential mechanisms underpinning an association between genetically proxied ACE

inhibition and colorectal cancer risk are unclear. ACE is a multifaceted enzyme, capable of

cleaving several different peptide substrates with potential roles in carcinogenesis [70]. Along

with ACE inhibition leading to an accumulation of bradykinin and substance P, both potential

inducers of tumor proliferation, ACE inhibition can also lead to an increase in Ac-SDKP, an

Fig 6. Regional Manhattan plot of associations of SNPs with ER− breast cancer risk ±300 kb from the SNP used to proxy SBP (rs35797045)

in the SLC12A3 region. ER, estrogen receptor; Mb, Megabase; SBP, systolic blood pressure; SNP, single-nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1003897.g006
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endogenous antifibrotic peptide that is capable of inducing angiogenesis [71]. The observed

restriction of an association of genetically proxied ACE inhibition with risk of colon, but not

rectal, cancer is consistent with evidence that mRNA and protein levels of ACE are enriched in

the colon but not in rectal tissue [72]. There was limited evidence of association of a serum

ACE genetic risk score with distinct gene expression profiles in transcriptome-wide analyses.

However, gene set enrichment analysis of these findings suggested enriched expression of

genes involved in immunological pathways relating to memory CD8 T cells and coexpression

network analysis identified ACE expression in a cluster of coexpressed genes enriched for

colorectal cancer risk susceptibility genes (e.g., LAMA5, PNKD, TOX2, PLEKHG6) [73]. These

findings suggest potential future avenues of exploration to uncover mechanistic pathways link-

ing ACE with colorectal cancer risk.

Meta-analyses of randomized trials have not reported increased rates of cancer among ACE

inhibitor users, though these analyses have not reported findings separately for colorectal can-

cer [2,3]. Potential discrepancies in findings for colorectal cancer between this mendelian ran-

domization analysis and previous clinical trials could reflect the relatively short duration of

these trials (median follow-up of 3.5 years) given long induction periods of colorectal cancer.

For example, the “adenocarcinoma sequence” proposes that transformation of normal colorec-

tal epithelium to an adenoma and ultimately to invasive and metastatic cancer may occur over

the course of several decades [74,75]. Consistent with this long induction period, in random-

ized controlled trials examining the chemopreventive effect of aspirin on colorectal cancer

Fig 7. Regional Manhattan plot of associations of SNPs with colon ACE expression ±300 kb from the SNP used to proxy colon ACE

expression (rs4292) in the ACE region. ACE, angiotensin-converting enzyme; Mb, Megabase; SNP, single-nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1003897.g007
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risk, protective effects of aspirin are not seen until 7 years after initiation of treatment, with

clear risk reductions becoming apparent only after 10 years of follow-up [76]. It is therefore

possible that adverse effects of ACE inhibition on colorectal cancer risk may likewise not

emerge until many years after treatment initiation. Alternatively, it may be possible that an

effect of ACE inhibition on cancer is restricted solely to the earliest stages of the adenoma-car-

cinoma sequence and therefore may not influence cancer risk among largely middle-aged par-

ticipants of clinical trials if dysplasia is already present. Finally, it is possible that lower levels of

circulating ACE concentrations may influence colorectal cancer risk only during a particular

critical or sensitive period of the life course (e.g., in childhood or adolescence), given some evi-

dence to suggest a potential role of early-life factors in colorectal carcinogenesis [77].

Our largely null findings for genetically proxied ACE inhibition and risk of breast, lung,

and prostate cancer risk are not consistent with some previous observational reports that com-

pared ACE inhibitor users to nonusers or to users of β blockers or thiazide diuretics [7,9,17].

However, our findings for genetically proxied ACE inhibition are in agreement with those

from short-term randomized controlled trials for these site-specific cancers and suggest that

long-term use of these drugs may not influence cancer risk, though we cannot rule out small

effects from their long-term use [3]. Likewise, our findings for ADRB1 and NCC are in agree-

ment with short-term trial data reporting no association of β blockers and thiazide diuretics

use with overall cancer risk [2].

Strengths of this analysis include the use of cis-acting variants in genes encoding antihyper-

tensive drug targets to proxy inhibition of these targets, which should minimize confounding,

Fig 8. Regional Manhattan plot of associations of SNPs with colorectal cancer risk ±300 kb from the SNP used to proxy colon ACE

expression (rs4292) in the ACE region. ACE, angiotensin-converting enzyme; Mb, Megabase; SNP, single-nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1003897.g008
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the employment of various sensitivity analyses to rigorously assess for violations of mendelian

randomization assumptions, and the use of a summary-data mendelian randomization

approach, which permitted us to leverage large-scale genetic data from several cancer GWAS

consortia, enhancing statistical power and precision of causal estimates. As with prior mende-

lian randomization analyses of antihypertensive drug targets that used similar approaches to

instrument construction to our analysis, the general concordance of estimates of the effect of

these instruments on cardiometabolic endpoints with those reported in prior clinical trials for

these medications supports the plausibility of these instruments [78,79]. Finally, the use of

germline genetic variants as proxies for antihypertensive drug targets facilitated evaluation of

the effect of the long-term inhibition of these targets, which may be more representative of the

typically decades-long use of antihypertensive therapy as compared to periods of medication

use typically examined in conventional observational studies and randomized trials. Despite

the evidence suggesting a link between genetically proxied ACE inhibition and colorectal can-

cer, however, these findings cannot demonstrate a causal relationship between ACE inhibitor

use and colorectal cancer risk; only a randomized controlled trial could establish this

relationship.

There are several limitations to these analyses. First, mendelian randomization analyses are

restricted to examining on-target (i.e., target-mediated) effects of therapeutic interventions.

Second, statistical power was likely limited in some analyses of less common cancer subtypes.

Limited statistical power in analyses of genetically proxied ACE inhibition and colorectal can-

cer risk in East Asians (instrumented by rs4343) may also have accounted for the lack of asso-

ciation between these traits within this population. Identification of stronger genetic

instruments for ACE inhibition in East Asian populations can help to uncover whether the

lack of transportability of ACE and colorectal cancer findings from Europeans to East Asians

reflects lower statistical power in the latter or differences in local LD structure across ances-

tries. In addition, statistical power can be limited in colocalization analysis, which can reduce

the probability of shared causal variants across traits examined being detected (i.e., leading to

“false negative” findings). We therefore cannot rule out the possibility that some colocalization

findings suggesting low posterior probabilities of shared causal variants across traits (e.g., colo-

calization analyses for genetically proxied NCC inhibition and ER− breast cancer risk)

reflected the limited power of this approach. Third, while we were able to perform sensitivity

analyses for ADRB1 inhibition by restricting instruments to SNPs that were also eQTLs for

ADRB1, we were unable to find evidence that the SNP used to instrument NCC (rs35797045)

was also an eQTL for the gene encoding this target. Fourth, while these analyses did not

account for previously reported associations of genetically proxied elevated SBP with antihy-

pertensive medication use within the colorectal cancer datasets analyzed, such correction

would be expected to strengthen, rather than attenuate, findings presented in this study [80].

Likewise, in “instrument validation” analyses for ADRB1, our inability to recapitulate known

effects of ADRB1 inhibition (via beta blockers) on stroke risk could reflect the aforementioned

inability to account for blood pressure medication users in the stroke datasets analyzed. It is

also possible that these findings reflect the presence of horizontal pleiotropy in the instrument

biasing the effect estimate toward the null and/or a nontarget-mediated effect of these medica-

tions on stroke risk. Fifth, though mixed-ancestry GWAS were used to construct instruments

for serum ACE concentrations, effect allele frequencies for variants used in this instrument

were similar across European and Latin American ancestry participants, suggesting that men-

delian randomization findings were unlikely to be influenced by confounding through residual

population stratification. Sixth, effect estimates presented make the additional assumptions of

linearity and the absence of gene–environment and gene–gene interactions. Seventh, our

genetically proxied ADRB1 findings are of greater relevance to second generation β blockers
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(e.g., atenolol and metoprolol), which selectively inhibit ADRB1 as compared to first genera-

tion β blockers (e.g., propranolol and nadolol), which equally inhibit ADRB1 and ADRB2 [81].

Future mendelian randomization analyses examining the potential effects of long-term first

generation β blocker use incorporating both ADRB1 and ADRB2 variants is warranted. Eighth,

we cannot rule out findings presented being influenced by canalization (i.e., compensatory

processes being generated during development that counter the phenotypic impact of genetic

variants being used as instruments). Finally, while various sensitivity analyses were performed

to examine exchangeability and exclusion restriction violations, these assumptions are

unverifiable.

Colorectal cancer is the third most common cause of cancer globally [82]. Given the preva-

lence of ACE inhibitor use in high- and middle-income countries and growing use in low-

income countries, and the often long-term nature of antihypertensive therapy, these findings,

if replicated in subsequent clinical trials, may have important implications for choice of antihy-

pertensive therapy [4]. Importantly, given that hypertension is more prevalent among those

who are overweight or obese (risk factors for colorectal cancer), these findings suggest that

long-term use of this medication could increase colorectal cancer risk among populations who

are already at elevated risk of this disease. There are different types and classes of ACE inhibi-

tors, which vary in their pharmacodynamic and pharmacokinetic properties [83]. These differ-

ing pharmacological properties (e.g., differential absorption rate, affinity for tissue-bound

ACE, and plasma half-life) can influence therapeutic benefit (or experience of adverse effects)

of ACE inhibitors [84,85]. Future evaluation of the potential effects of long-term ACE inhibi-

tor use on cancer risk should therefore include assessment of whether findings are specific to

individual agents or classes of ACE inhibitors. As data on circulating levels of ADRB1 and

NCC become available in future GWAS, there would be merit in evaluating whether findings

presented in this analysis can be replicated when using alternate instruments developed from

protein quantitative loci for these targets. Further work is warranted to unravel molecular

mechanisms underpinning the association of ACE with colorectal cancer risk. In addition,

extension of the analyses presented in this study to a survival framework could inform on

whether concurrent use of ACE inhibitors may have an adverse effect on prognosis among

colorectal cancer patients. Finally, findings from this analysis should be “triangulated” by

employing other epidemiological designs with orthogonal (i.e., nonoverlapping) sources of

bias to each other to further evaluate the association of ACE inhibition and colorectal cancer

risk [86].

Conclusions

Our mendelian randomization analyses suggest that genetically proxied long-term inhibition

of ACE is associated with increased risk of colorectal cancer. Evaluation of ACE inhibitor use

in randomized controlled trials with sufficient follow-up data can inform on the long-term

safety of these medications. Our findings provide human genetic support to results from

short-term randomized trials suggesting that long-term use of β blockers and thiazide diuretics

may not influence risk of common cancers.
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