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ABSTRACT 
 

The ongoing pandemic of coronavirus 2 represents a major challenge for global public health 
authorities. Coronavirus disease 2019 can be fatal especially in elderly people and those with 
comorbidities. Currently, several vaccines against coronavirus 2 are under application in multiple 
countries with emergency use authorization. In the same time, many vaccine candidates are under 
development and assessment. It is worth noting that the design of some of these vaccines depends 
on the expression of receptor binding domain for viral spike protein to induce host immunity. As 
such, blocking the spike protein interface with antibodies, peptides or small molecular compounds 

Original Research Article 



 
 
 
 

Odhar et al.; JPRI, 33(20A): 74-84, 2021; Article no.JPRI.66801 
 
 

 
75 

 

can impede the ability of coronavirus 2 to invade host cells by intervention with interactions 
between viral spike protein and cellular angiotensin converting enzyme 2. In this virtual screening 
study, we have used predictive webservers, molecular docking and dynamics simulation to 
evaluate the ability of 3000 compounds to interact with interface residues of spike protein receptor 
binding domain. This library of chemicals was focused by Life Chemicals as potential protein-
protein interactions inhibitor. Here, we report that hit compound 7, with IUPAC name of 
3‐cyclohexyl‐N‐(4‐{[(1R,9R) ‐6‐oxo‐7,11‐ diazatricyclo [7.3.1.0

2,7
] trideca‐2,4‐dien‐11‐yl] sulfonyl} 

phenyl) propenamide, may have the capacity to interact with interface of receptor binding domain 
for viral spike protein and thereby reduce cellular entry of the virus. However, in vitro and in vivo 
assessments may be required to validate these virtual findings.  
 

 
Keywords: SARS-CoV-2; COVID-19; protein-protein interactions inhibitor; rule of four; docking; 

molecular dynamics simulation. 
 

1. INTRODUCTION 
 
The severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) is the causative 
pathogen responsible for the ongoing pandemic 
of coronavirus disease 2019 (COVID-19) [1]. 
SARS-CoV-2 is a novel RNA virus and has about 
79% of genomic sequence identity with SARS-
CoV, a previously identified beta-coronavirus [2]. 
SARS-CoV-2 can be transmitted mainly      
through exposure to respiratory droplets 
generated by infected persons. Airborne 
transmission by aerosols is also possible during 
aerosol generating medical procedures like 
intubation [3]. Upon exposure to SARS-CoV-2, 
the mean incubation period can range between 
5.6 and 6.7 days after which symptoms of 
COVID-19 may develop [4]. Common clinical 
features of COVID-19 include fever, dry cough, 
shortness of breath, fatigue, myalgia, nausea, 
vomiting and diarrhea. The COVID-19 infection 
fatality rate (IFR) is estimated to be 0.68% in 
general with 95% confidence interval between 
0.53% and 0.82%. COVID-19 fatality is usually 
the result of complications like pneumonia, acute 
respiratory distress syndrome (ARDS), cardiac 
injury, liver injury, kidney injury and coagulopathy 
[5,6]. Therapeutic options currently available to 
control COVID-19 complications involve oxygen 
supply, management of sepsis, use of 
corticosteroids, heparin and antiviral agents like 
Remdesivir [5,7–9]. According to World health 
organization (WHO), as of 18 February 2021, 
seven anti-COVID-19 vaccines are under 
emergency use authorization in multiple 
countries and more than 60 vaccine candidates 
are under clinical development [10]. Different 
platforms have been utilized to produce         
these COVID-19 vaccines like inactivated virus, 
protein subunit, recombinant viral-vector and 
nucleic acid (DNA and mRNA). Some of these 
vaccines have focused on the expression of full-

length SARS-CoV-2 spike protein inside human 
body to elicit immune response, other vaccines 
used only the receptor binding domain (RBD) of 
spike protein to induce immunity [11]. SARS-
CoV-2 can infect susceptible host through 
interaction with angiotensin converting enzyme 2 
(ACE2) on the surface of target cells. The 
receptor binding domain (RBD) of SARS-CoV-2 
is located     within S1 subunit of the viral spike 
protein [12]. Virtual alanine scanning approach 
have been used to determine the interacting 
residues at the interface of SARS-CoV-2 
receptor binding domain and angiotensin 
converting enzyme 2. Identification of these 
interface residues is considered important to 
construct a protein-protein interactions (PPIs) 
inhibitor capable of blocking cellular entry of 
SARS-CoV-2 [13]. A three-dimensional 
illustration for the complex between RBD of 
SARS-CoV-2 spike protein and ACE2 can be 
seen in Fig. 1 (A). A close view for interaction 
interface of crystal complex can be seen in Fig. 1 
(B). The sequence of amino     acids for RBD of 
SARS-CoV-2 spike glycoprotein is presented in 
Fig. 1 (C), RBD residues involved in interaction 
with ACE2 are surrounded by orange line. In this 
virtual screening study, we have used a protein-
protein interactions (PPIs) focused library of 
compounds from Life Chemicals database. Our 
aim was to identify potential inhibitor of SARS-
CoV-2 spike      protein binding to ACE2 thereby 
blocking viral entry to target cells. The            
chemical compounds in this library were curated 
based on rule of four (RO4) principle. According 
to rule of four, a compound may have the 
potential to inhibit protein-protein interactions 
(PPIs) if it possesses the following four chemical 
criteria: a molecular weight (M.W.) ≥ 400 g/ mol, 
a calculated logarithm of partition coefficient 
(cLog P) ≥ 4, the number of rings ≥ 4 and the 
number of hydrogen bond acceptor (HBA) ≥ 4 
[14,15]. 



Fig. 1. (A) A three-dimensional view for 6LZG crystal complex between receptor binding 
domain RBD of SARS-CoV-2 spike protein and its receptor angiotensin converting enzyme 2 
ACE2. (B) A close view for interaction interface between SARS

ACE2, the amino acid residues of spike protein RBD are shown as sticks. 
sequence of SARS-CoV-2 spike protein RBD is presented in one letter format, RBD residues 

that are involved in interaction with AC
 

2. MATERIALS AND METHODS
 
2.1 Preparation of Receptor Binding 

Domain Crystal and 
Database 

 
The crystal complex of receptor binding domain 
RBD of SARS-CoV-2 spike protein and 
angiotensin converting enzyme 2 ACE2 was 
downloaded from protein data bank website, the 
identification code for the downloaded crystal 
PDB is 6LZG [16,17]. We have used UCSF 
chimera version 1.15 to prepare the crystal file 
for docking study and dynamics simulation 
By using UCSF chimera software, we have 
removed ACE2 peptidase domain (chain A) from 
6LZG crystal, we have also removed any bound 
ligands, water molecules and ions. The residues 
sequence of chain B (receptor binding domain) 
was visualized as one letter format by using 
UCSF chimera.  We have used 3000 compounds 
downloaded from Life Chemicals website as a 
screening library, this library of chemicals was 
focused by Life Chemicals as potential inhibitors 
for protein-protein interactions (PPIs) by using 
rule of four (RO4) filtration criteria. Based on 
RO4 principle, any compound may have the 
capacity to interfere with interactions between 
two proteins if it has the following criteria: a 
molecular weight ≥ 400 g/ mol, a logarithm of 
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capacity to interfere with interactions between 
two proteins if it has the following criteria: a 

≥ 400 g/ mol, a logarithm of 

partition coefficient ≥ 4, the number of hydrogen 
bond acceptor ≥ 4 and the number of rings ≥ 4. 
Additionally, the compounds in this focused 
library have been enriched for sp3 hybridization 
of carbon atoms to ensure high level of three
dimensional diversity and hence sufficient dru
likeness score [14,15]. 
 

2.2 Structure-based Virtual Screening
 

We have used MCULE online drug discovery 
website to screen the downloaded chemicals 
library against the prepared crystal of SARS
CoV-2 spike protein RBD (chain B of 6LZG 
crystal) [19]. Here, we used a virtual screening 
workflow steps similar to those applied in our 
previously published researches 
summary, we have used the default screening 
steps with the addition of REOS (Rapid 
Elimination of Swill) filter to reduce possibility of
frequent and non-selective hits. The MCULE 
website employs AutoDock Vina tool to perform 
structure based virtual screening 
online drug discovery platform uses AutoDock 
tools to add polar hydrogen atoms and Gasteiger 
charges to the uploaded crystal [
used a binding site area of (X: 30, Y:30, Z:30) 
Angstrom while the coordinates were (X: 
26, Z: 7.5). The final hits were ranked according 
to their least binding energy to the receptor 
binding domain (RBD) of SARS
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selective hits. The MCULE 
website employs AutoDock Vina tool to perform 
structure based virtual screening [22]. Also, this 
online drug discovery platform uses AutoDock 
tools to add polar hydrogen atoms and Gasteiger 

[23]. We have 
used a binding site area of (X: 30, Y:30, Z:30) 
Angstrom while the coordinates were (X: -33, Y: 
26, Z: 7.5). The final hits were ranked according 
to their least binding energy to the receptor 
binding domain (RBD) of SARS-CoV-2 spike 
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protein crystal (chain B). According to the 
minimum binding energy rank, we have selected 
the top ten hits for further virtual characterization 
and visualization. For each compound of these 
top ten hits, we have saved the complex of ligand 
and protein with least binding energy pose as 
PDB file. The generated PDB file was then 
visualized as two and three-dimensional 
illustrations by using PyMOL version 2.4.1 and 
Discovery Studio Visualizer version 21.1.0.20298 
respectively [24,25]. The two-dimensional 
chemical structures of these top ten hits were 
drawn by using MarvinSketch version 20.1 [26]. 
 

2.3 Prediction of Chemical, 
Pharmacokinetics and Mutagenic 
Characteristics of Hit Compounds 

 
MCULE online platform provides the opportunity 
to predict various chemical features of the 
generated hit compounds. Drug-likeness score 
for the top ten hits were predicted by using 
Molsoft webserver [27]. Various 
pharmacokinetics and mutagenic characteristics 
for the top hits were predicted and calculated by 
using SwissADME and pkCSM webservers 
[28,29]. These webservers use predictive 
regression and molecular similarity to analyze 
molecules under investigation [30,31]. 
 

2.4 Molecular Dynamics (MD) Study 
 

We have employed YASARA Dynamics version 
20.12.24 to perform molecular dynamics (MD) 
simulation of the ligand-protein complex with the 
least binding energy pose [32]. The steps for 
molecular dynamics simulation study are similar 
to what we had followed in our previously 
published researches [21,33]. In summary, the 
MD protocol involves hydrogen bonds network 
optimization and a pKa prediction to fine-tune the 
protonation of residues at pH value equal to 7.4 
[34]. NaCl was added with a concentration of 
0.9%, an excess of either sodium or chloride ions 
were used to neutralize ligand-protein complex. 
To eliminate any possible clashes, steepest 
descent and simulated annealing minimizations 
were applied. The simulation period employed 
was 10 nanoseconds by using AMBER14 force 
field for solute, TIP3P for water, AM1BCC and 
GAFF2 for ligand [35–37]. The cutoff value for 
van der Waals (vdW) forces was 8 Angstrom, the 
default parameters were employed by AMBER 
[38]. By applying Particle Mesh Ewald algorithm, 
no cutoff value was used for electrostatic forces 
[39]. The motions equations were used as a 
multiple timestep of 1.25 and 2.5 femtoseconds 

for bonded and non-bonded interactions 
respectively at a pressure of 1 atm and a 
temperature of 298K [40]. After assessment of 
root-mean-square deviation (RMSD) for the 
solute as a function of simulation period, the first 
10 nanoseconds were regarded as the 
equilibration time and precluded from further 
analysis. 

 
3. RESULTS AND DISCUSSION 
 
A prediction of different chemical characteristics 
for the top ten hit compounds that were 
computationally screened against RBD crystal of 
SARS-CoV-2 spike protein can be seen in Table 
1. In this table, the hit compounds were ranked 
according to their minimum binding energy to 
RBD crystal. According to Table 1, all these 
protein-protein interactions (PPIs) inhibitor 
candidates have a molecular weight greater than 
400 g/ mol and a number of hydrogen bond 
accepters greater than 4. Regarding the 
prediction of partition coefficient logarithm (Log 
P), all the reported hits have Log P value greater 
than 4 with the exception of compounds 4, 9 and 
10. The chemical structures for these top ten hits 
can be seen in Fig. 2 where all these compounds 
have more than 4 rings within their structures. 
Based on chemical data presented in Table 1 
and Fig. 2, we can assess the adherence of 
these hit compounds to rule of four criteria. 

 
In Table 2, various pharmacokinetics properties 
together with mutagenic potential are predicted 
and listed for the top ten hit compounds. These 
hits were ordered in Table 2 according to their 
predicted least binding energy as presented in 
this table. It is obvious that compounds 4, 9 and 
10 have one violation for rule of four (RO4) 
criteria as seen in Table 2. The logarithm of 
partition coefficient (Log P) for these compounds 
is less than 4 as reported in Table 1. All the 
reported hits have a high predicted drug-likeness 
score with the exception of compounds 2, 3 and 
8. Both compounds 1 and 6 were precluded from 
further analysis due to their anticipated poor 
water solubility. Additionally, compounds 4 and 
10 may have a mutagenic capacity as predicted 
by AMES toxicity and therefore are excluded 
from any further examination. According to Table 
2, only compounds 5 and 7 pass all the criteria 
for rule of four (RO4), have high drug-likeness 
score, possess moderate water solubility with no 
mutagenic capacity as indicated by predictive 
webservers. As such, only compounds 5 and 7 
were considered for further evaluation of docking 
images and dynamics simulation. 



Fig. 2. Chemical structures of the top ten protein
candidates as screened virtually against receptor binding domain (RBD) of SARS

protein crystal. These candidates are ranked according to their minimu
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Table 1. Chemical characteristics of the top ten protein-protein interactions (PPIs) inhibitors that were virtually screened against receptor binding 
domain (RBD) crystal of SARS-CoV-2. These top hits were ranked according to their minimum binding energy to SARS-CoV-2 RBD crystal 

 
Compound no Molecular formula M.W. (g/ mol) Log P TPSA (Å

2
) H-bond acceptors H-bond donors 

1 C26H32N4O2S 464.625 5.471 106.33 6 2 
2 C25H32N2O4S2 488.667 6.425 91.52 6 0 
3 C23H28N2O3S 412.547 5.874 74.86 5 1 
4 C24H29F3N4O 446.508 3.748 38.82 5 1 
5 C28H31F3N6O2 540.579 4.393 75.74 8 0 
6 C26H28FN3O3S 481.584 5.070 98.52 6 1 
7 C26H33N3O4S 483.624 5.047 96.86 7 1 
8 C24H37N7O 439.597 4.330 87.23 8 3 
9 C23H28ClN3O3 429.937 3.538 54.04 6 1 
10 C21H25FN6O2 412.460 3.303 93.32 8 2 

M.W.: molecular weight; Log P: logarithm of partition coefficient; TPSA: topological polar surface area 
 

Table 2. Predicted least binding energy, pharmacokinetic characteristics and mutagenic capacity of the top inhibitors for protein-protein 
interactions (PPIs) as screened against RBD crystal of SARS-CoV-2. These chemical compounds were arranged according to their predicted 

minimum binding energy to RBD crystal 
 

No Binding energy 
(Kcal/ mol) 

RO4 violations Drug-likeness score Water solubility (mg/ ml) Intestinal 
absorption (%) 

VDss 
(L/Kg) 

AMES toxicity 

1 -8.7 0 1.16 7.43e-05(Poor) 92.95 3.43 No 
2 -8.5 0 -0.88 6.39e-04(Moderate) 96.66 3.29 No 
3 -8.5 0 0.52 4.76e-04(Moderate) 93.22 3.11 No 
4 -8.1 1 1.88 3.36e-02(Moderate) 88.86 62.52 Yes 
5 -8.0 0 1.23 1.03e-03(Moderate) 93.94 1.03 No 
6 -7.8 0 1.00 3.37e-04(Poor) 96.27 2.55 No 
7 -7.8 0 1.16 2.00e-03(Moderate) 96.28 1.50 No 
8 -7.7 0 -0.49 5.71e-04(Moderate) 94.19 32.21 No 
9 -7.6 1 1.76 4.77e-02(Soluble) 92.26 8.41 No 
10 -7.6 1 0.62 5.66e-03(Moderate) 91.91 0.83 Yes 

RO4: role of four; VDss: steady state volume of distribution. 



Fig. 3. Docking results of compound 5 and compound 7 against receptor binding domain of 
SARS-CoV-2 spike protein crystal are illustrated in three
views as seen in (A) and (B) respectively. For each compound, only docking pose with l

binding energy was considered here. For two
represent amino acid residues in RBD interaction interface while dashed l

 

Careful examination of two and three
dimensional illustrations for compound 5 and 7 
docking against RBD crystal with least binding 
energy pose, as presented in Fig. 3
both compounds may be involved in different 
kinds of chemical interactions with interface 
residues of RBD crystal. Of interest is the 
possible ability of compound 5 to form 
conventional hydrogen bond with Glycine 496 as 
seen in Fig. 3 (A). On the other hand, compound 
7 may have the capacity to form conventional 
hydrogen bond with Tyrosine 449 as noticed in 
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Of interest is the 
possible ability of compound 5 to form 
conventional hydrogen bond with Glycine 496 as 

. On the other hand, compound 
7 may have the capacity to form conventional 
hydrogen bond with Tyrosine 449 as noticed in 

Fig. 3 (B). Both Tyrosine 449 and Glycine 496 
are considered interface residues of RBD crystal 
as can be seen in Fig. 1. 
 
Finally, the results for compounds 5 and 7 
molecular dynamics (MD) simulation were 
reported in both Fig. 4 and 
superposing the receptor on its reference 
structure, ligand proximity to RBD interface 
residues can be recorded as a function of 
simulation period as seen in Fig
evident that compound 5 has moved away from 
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Finally, the results for compounds 5 and 7 
molecular dynamics (MD) simulation were 

and Fig. 5. By 
superposing the receptor on its reference 
structure, ligand proximity to RBD interface 
residues can be recorded as a function of 

Fig. 4. It is well-
evident that compound 5 has moved away from 



initial binding site by the end of simulation period 
as noticed in Fig. 4 (A), this may refer to weak 
interactions between compound 5 and RBD 
interface residues. On the other hand, 
shows that compound 7 can maintain a more 
constant distance from RBD interface as 
reported by root-mean-square deviation (RMSD) 
of ligand movement throughout 10 nanoseconds. 
This may indicate that compound 7 has stronger 
interactions with RBD crystal interface than does 
compound 5. Conformational changes RMSD of 
 

Fig. 4. Root-mean-square deviation (RMSD) of ligand movement as a function of simulation 
interval. Plot (A) is for compound 5 movement and plot

Odhar et al.; JPRI, 33(20A): 74-84, 2021; Article no.

 
81 

 

d of simulation period 
, this may refer to weak 

interactions between compound 5 and RBD 
interface residues. On the other hand, Fig. 4 (B) 
shows that compound 7 can maintain a more 
constant distance from RBD interface as 

square deviation (RMSD) 
of ligand movement throughout 10 nanoseconds. 
This may indicate that compound 7 has stronger 
interactions with RBD crystal interface than does 
compound 5. Conformational changes RMSD of 

compounds 5 and 7 can be seen in 
and (B) respectively. By superposing the ligand 
on its reference structure throughout simulation 
period, we can observe that the conformational 
changes RMSD for compounds 5 and 7 in 
are consistent with ligand movement RMSD for 
these two compounds in Fig. 4. Based on these 
results, it is obvious that compound 7 may have 
more capacity than do compound 5 to bind 
interface residues of receptor binding domain for 
SARS-CoV-2 spike protein. 

 
 

square deviation (RMSD) of ligand movement as a function of simulation 
interval. Plot (A) is for compound 5 movement and plot (B) is for compound 7 movement

 
 
 
 

; Article no.JPRI.66801 
 
 

compounds 5 and 7 can be seen in Fig. 5 (A) 
respectively. By superposing the ligand 

on its reference structure throughout simulation 
period, we can observe that the conformational 
changes RMSD for compounds 5 and 7 in Fig. 5 
are consistent with ligand movement RMSD for 

. Based on these 
results, it is obvious that compound 7 may have 
more capacity than do compound 5 to bind 
interface residues of receptor binding domain for 

square deviation (RMSD) of ligand movement as a function of simulation 
(B) is for compound 7 movement 



Fig. 5. Root-mean-square deviation (RMSD) of ligand conformational changes as a functi
simulation interval. Plot (A) is for compound 5 conformational changes while plot (B) is for 

compound 7 conformational changes
 
4. CONCLUSION 
 

We report that compound 7, with IUPAC name of 
3‐cyclohexyl‐N‐(4‐{[(1R,9R) 
diazatricyclo [7.3.1.02,7] trideca‐2,4
sulfonyl} phenyl) propenamide, may be able to 
interfere with interactions between RBD of 
SARS-CoV-2 spike protein and AC2 peptidase 
domain. Prediction of chemical and 
pharmacokinetics features along with outputs of 
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