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Due to the abuse application of antibiotics in the recent decades, a high level of antibiotics has been let out and remains in our
environment. Electrochemical sensing is a useful method to sensitively detect antibiotics, and the key factor for a successful
electrochemical sensor is the active electrode materials. In this study, a sensitive electrochemical sensing platform based on a
metal-organic framework (MOF) of MIL-53 (Fe) was facilely fabricated. It shows highly selective and sensitive detection
performance for trace tetracycline. Differential pulse voltammetry (DPV) was applied to analyze the detection of tetracycline.
The linear range of tetracycline detection was 0.0643μmol/L-1.53μmol/L, and the limit of detection (LOD) is 0.0260 μmol/L.
Furthermore, the MOF-enabled sensor can be effectively used in actual water bodies. The results indicate that the
electrochemical sensor is a high potential sensing platform for tetracycline.

1. Introduction

Tetracycline is a typical antibiotic which has been widely
used to treat infections caused by Gram-positive and Gram-
negative bacterium in both human and animals. Further-
more, it has been also used as growth promoting agents in
livestock breeding industry [1]. Because of its low cost and
wide-spectrum antibacterial activity, abuse application of tet-
racycline was common in the past decades. As a result, high
tetracycline residue was detected in lots of environmental
areas nowadays, including soil, water, and animal produc-
tions [2]. Long-term exposure to antibiotics can cause
directed toxicity or result in allergies, also boosting the prev-
alence of antibiotic resistance [3–6]. Tetracycline, as one of
the most applied antibiotics, is considered to be carcinogenic,
and depressive to bone growth besides the common adverse
effects of antibiotics [7]. Tetracycline is a typical emerging
contaminant (ECs), which usually refers to those highly con-
cerned environmental substances because of their detecting
frequency and potential dangers, but the environmental

management details such as monitor regulations and emis-
sion control limits are still in blank [8]. Thereafter, highly
sensitive and fast responsive techniques for tetracycline
detection are urgently needed, which are important for the
governors to formulate the suitable management policies.

Numerous methods have been developed for tetracycline
detection. Chromatographic methods are the sensitive
methods to detect tetracycline, including high performance
liquid chromatography (HPLC) [9], liquid chromatography
coupled to mass spectrometry (LCMS) [10], and thin-layer
chromatography (TLC) [11]. Nevertheless, some inherent
drawbacks, such as time-costing, needing highly professional
operators, and luxury devices, significantly limit their wide
application. Besides chromatographic methods, some other
methods such as capillary electrophoresis (CE) [12] and
enzyme-linked immunosorbent assay (ELISA) [13] are also
applied to detect tetracycline with good performance. But
inherent disadvantages including complicated pretreatments
and skilled operation requirement still exist. Therefore, more
convenient, rapid, sensitive, and selective techniques are
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Figure 1: Continued.
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highly required in tetracycline detection. Recently, tetracy-
cline detection based on electrochemical sensors rapidly
develops owing to their easy operation, high sensitivity, high
selectivity, and real-time detection.

Metal-organic frameworks (MOFs), a polymer built by
assembling metal ions and lots of organic linkers, has been
widely used in catalysis [14], adsorption [15], energy storage
[16], sensors [17] and so on, due to their unique advantages
of plentiful micropores, large specific surface area, abundant
active sites, and varied conformations [18]. Therefore, facile
whereas highly performed MOF-enabled electrochemical
sensors are highly demanded.

In this study, a simple electrochemical sensing platform
based on a Fe containing MOF, MIL-53 (Fe), modified glass
carbon electrode (denoted as MIL-53 (Fe)/GCE) was facilely
fabricated. The present work demonstrates that MIL-53
(Fe)/GCE shows highly sensitive detection performance for
trace tetracycline, indicating its high potential in effective
electrochemical sensor application due to the easy fabrica-
tion, high sensitivity, and low cost.

2. Materials and Methods

2.1. Materials. N, N-dimethylformamide (DMF), absolute
ethanol (CH3CH2OH), and ferric chloride hexahydrate
(FeCl3·6H2O) were obtained from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). p-Phthalic acid
(C8H6O4, H2BDC) and tetracycline (C22H24N2O8·xH2O)
were bought from Aladdin, China. Other chemicals were
all commercial with analytical grade and used directly.
Deionized water (DI water) was used through the
experiments.

2.2. Preparation of MIL-53 (Fe). 0.68 g (2.5mmol)
FeCl3·6H2O and 0.42 g (2.5mmol) p-phthalic acid
(H2BDC) were resolved completely in 54mL DMF. Then,
the mixture was placed into a stainless steel autoclave with
Teflon lining to react at 150°C for 15 h. After that, the solid
was separated and thoroughly washed. Finally, the solid
was dried to obtain the MIL-53 (Fe) powder with light
orange color [19].
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Figure 1: (a, b) SEM images of MIL-53 (Fe). (c, d) TEM images of MIL-53 (Fe). (e–h) Elemental mapping of MIL-53 (Fe).
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2.3. Preparation of MIL-53 (Fe)/GCE. 5mg MIL-53 (Fe) was
dispersed by ultrasonication in 5.0mL deionized water to
form a suspension (1mg/mL). The GCE (diameter 3mm)
was polished with alumina powder and then ultrasonically
washed with dilute nitric acid (Vconcentrated nitric acid : Vwater
= 1 : 1), ethanol, and DI water sequentially. At last, it was
dried at room temperature (RT). 8μL suspension was
dropped on the surface of the polished GCE. After it
was dried, 8μL 0.5% Nafion was applied in drops to the
surface to obtain the MIL-53 (Fe) modified GCE, denoted
as MIL-53 (Fe)/GCE, and then, it was wired for electrical
measurements.

2.4. Characterizations. The morphology of MIL-53 (Fe) was
studied by scanning electron microscopy (SEM) (Hitachi-
4800, Japan) and transmission electron microscope (TEM)
(JEM-2100, Japan). Samples were analyzed by X-ray powder
diffractometer (XRD, Rigaku III/B max, Cu Ka). Fourier
transform infrared spectroscopy (FT-IR) analyses were
recorded on a Nicolet 380 (USA) instrument. Brunauer-
Emmett-Teller (BET, TriStar II 3020, USA) was analyzed
by the N2 adsorption-desorption isotherm.

2.5. Electrochemical Experiments. All the experiments were
conducted in a standard three-electrode system by an
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Figure 2: (a) FT-IR spectrum of the as-synthesized MIL-53 (Fe) and H2BDC. (b) XRD spectra of MIL-53 (Fe). (c) N2 adsorption-desorption
isotherms.
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electrochemical workstation (CHI660E). Platinum plate
electrode and Ag/AgCl (saturated KCl) were employed as a
counter electrode and a reference electrode, respectively,
and GCE supported by catalyst was used as a working elec-
trode. All subsequent experiments were carried out under
the condition of constant temperature at 25°C. Before the
experiment, nitrogen was used to purge the electrolyte for
degassing.

Differential pulse voltammetry (DPV) and cyclic volt-
ammetry (CV) were tested by adding certain amount of
tetracycline in 1M H2SO4. The scanning rate of CV is
100mV/s, and the voltage range is -0.7~1.2V. DPV was
applied with voltage range of -0.8~ 1.5V, pulse width of
50ms, and pulse amplitude of 50mV.

3. Results and Discussion

3.1. Characterizations of MIL-53 (Fe). The SEM and TEM
images of the as-prepared MIL-53 (Fe) are present in
Figure 1. As one can see in SEM images (Figures 1(a) and
1(b)), the sample shows a typical octahedral structure, which
was further confirmed by the TEM images (Figures 1(c) and
1(d)). Elemental mapping study indicates that C, O, and Fe
all exist and uniformly distribute in the sample
(Figures 1(e)–1(h)). These observations are consistent with
the previous reports of MIL-53(Fe) [20, 21], suggesting the
successful synthesis of MIL-53 (Fe).

MIL-53 (Fe) and the ligand p-phthalic acid (H2BDC)
were investigated by FT-IR spectroscopy, and the results
are indicated in Figure 2(a). One can see that MIL-53 (Fe)
clearly shows distinct peaks at 1587, 1396, 745, and
550 cm-1. The strong adsorption band appearing at
1396 cm-1 is ascribed to the symmetric vibrations of the
-COOH group, confirming the presence of carboxylate link-
ages in the framework of MIL-53 (Fe) [22]. The peak at
745 cm-1 is due to the bending vibration of the C-H bond
from the benzene ring [19, 23]. Furthermore, the band at
550 cm-1 is related to the tensile trembling of the Fe-O bond
[24], which indicates the formation of Fe-oxo cluster linking
the metal and the carboxyl group. H2BDC shows a clear
characteristic band of carboxyl group asymmetric vibrations
at 1682 cm-1. It is noted that this band in MIL-53 (Fe) shifts
to 1587 cm-1, indicating the carboxyl group of H2BDC coor-
dinated with the metal center and formed the complex of
MIL-53 (Fe) [25]. The FT-IR analysis indicate that MIL-53
(Fe) is successfully synthesized.

The structure of MIL-53 (Fe) was studied by XRD spec-
tra. As shown in Figure 2(b), the spectra exhibits strong
adsorption bands at 9.17°, 12.7°, 17.6°, and 25.5°, which are
consistent with the characteristic XRD spectra of MIL-53
(Fe) [21]. This result confirms the successful preparation of
MIL-53(Fe).

In order to study the surface area and pore diameter of
the as-synthetic MIL-53(Fe), the material were subjected to
BET analysis. As shown in Figure 2(c), the N2 adsorption-
desorption isotherms shows a typical H3 type hysteresis
ring, which indicates the existence of mesopores formed by
accumulation. The BET special surface area of MIL-53 (Fe)
is calculated to be 213.93m2/g. The high BET special area

and mesopores can increase the molecular interaction
between the analyte and the active electrode material, pro-
moting the sensing performance [26–29].

3.2. Electrochemical Characterization of MIL-53 (Fe). The
electrochemical behaviors of tetracycline over bare GCE
and MIL-53 (Fe)/GCE were investigated in 1M H2SO4 via
CV. It can be seen in Figure 3 that the reduction peak in
the range of -0.35 to -0.55V is sensitive, so it is measured
as a response signal to compare the difference between the
samples. It can be found that the bare GCE shows a little
electrochemical response to tetracycline. As GCE was
modified with MIL-53 (Fe), its response to tetracycline was
significantly improved, which indicates the high electro-
chemical activity toward tetracycline of MIL-53 (Fe).

3.3. The Effect of pH. The electrochemical responses of the
sensor toward tetracycline in different pH conditions were
investigated by CV, and the pH was adjusted by H2SO4 solu-
tion. The experiment was carried out under the following
conditions: constant temperature (25°C), tetracycline con-
centration of 0.641μmol/L, pH range of 0 to 2.6, voltage
range of -0.7V~1.2V, and scanning rate of 100mV/s. As
indicated in Figure 4(a), the reduction peak potential (Ep)
in the range of -0.35 to -0.55V is sensitive; therefore, it is
measured as a response signal. The reduction peak potential
(Ep) and the related peak current (Ip) were plotted with pH
values of the supporting electrolyte solution. As one can see
in Figure 4(b), when the pH value rises from 0 to 2.6, the
peak potential of the cathode changes negatively and is
inversely proportional to pH, indicating that protons are
directly related to electrochemical reactions [30]. The linear
relationship between peak potential (E) and pH over MIL-53
(Fe)/GCE towards tetracycline can be expressed as follows:
E = −0:05013pH − 0:3837 ðR2 = 0:94942Þ. It can be found
that the slope of the linear relationship is close to the
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Figure 3: CVs of bare GCE and MIL-53 (Fe)/GCE in 1M H2SO4
with 1.278 μmol/L tetracycline, respectively.
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theoretical value of 0.059V/pH (according to the Nernst
equation E = E0 − ð0:059/nÞ × pH) [31], indicating that the
detection of tetracycline by MIL-53 (Fe) is an electrochemi-
cal reaction that the same amount of proton and electron is
involved [30]. As one can see in Figure 4(c), when the pH
value is 0, the Ip value is the largest. When the pH rises from
0 to about 0.25, the value of Ip significantly decreases. When
the pH changes from 0.25 to 2, the Ip changes a little but rel-
atively stable as compared with the behaviors in other pH
ranges, indicating pH does not have much effect on Ip in this
range. When the pH is higher than 2.0, the value of Ip dra-
matically decreases as the pH rises. This result indicates that
pH = 0 can be determined as the optimum pH condition,
because the highest Ip value is obtained.

3.4. Detecting Range and Limit of MIL-53 (Fe)/GCE. The
detection of tetracycline over MIL-53 (Fe)/GCE was
measured by differential pulse voltammetry (DPV)
(Figure 5(a)). A certain amount of tetracycline was added
in 1M H2SO4 solution, and the DPV was carried out. The
concentration of tetracycline and the related peak current
(Ip) in DPV at ~0.25V (Ip) are linearly related over two dif-
ferent continuous concentration ranges (Figure 5(b)). The
relevant regression equation is as follows:

0.0643 μmol/L-0.769 μmol/L:

Ip μAð Þ = −1:3453 ∗ C μmol
L

� �
− 2:8646 R2 = 9616

� �
: ð1Þ
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Figure 4: (a) CVs of 0.641μM tetracycline over MIL-53 (Fe)/GCE in H2SO4 solution with different pH values (0-2.6). (b) The dependence
of Ep with pH. (c) The dependence of Ip with pH.
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0.769 μmol/L-1.53 μmol/L:

Ip μAð Þ = −0:3394 ∗ C μmol
L

� �
− 3:4794 R2 = 0:9920

� �
:

ð2Þ

The limit of detection (LOD) is calculated according to
the IUPAC criterion (based on 3 times the signal-to-noise
ratio, Equation (3)) [32].

LOD = 3σ
k
, ð3Þ

Table 1: Summary of the tetracycline detecting performance between different sensors.

Sensor types
Detection
techniques

Signal transducer or active electrode
materials

Linear range
(μM)

Detection limit
(μM)

References

Optical sensor type

Colorimetric
AuNPs 0.95-29.25 0.38 [33]

TMB 0.01-1 0.045 [34]

Fluorescence
MIP-APS-QDs 0.12-0.37 0.54 [35]

MIP-MAA-QDs 0.10-0.37 0.50 [36]

SPR AgNPs 112.5-11250 29.25 [37]

Electrochemical sensor
type

DPV

Fe/Zn-MMT/GCE 0.30–52 0.10 [1]

MIOPPy-AuNP/SPCE 1-20 0.65 [37]

MWCNTs/GCE 0.01-10 0.005 [38]

CV

PtNPs/C/GCE 9.99–44.01 4.28 [39]

UV-DNA/GCE 0.3-90 0.27 [40]

MIP/MWCNTs-AuNPs/GCE 0.225-90 0.09 [41]

DPV MIL-53(Fe)/GCE 0.0643-1.53 0.026 This work

SPR: surface plasmon resonance; DPV: differential pulse voltammetry; CV: cyclic voltammetry; AuNPs: Au nanoparticles; TMB: 3,3′,5,5′
-tetramethylbenzidine; MIP-APS-QDs: molecularly imprinting polymer-3-mercapto-propyltriethoxysilane-CdTe quantum dots; MIP-MAA-QDs:
molecmolecularly imprinting polymer-methacrylic acid-CdTe quantum dots; AgNPs: Ag nanoparticles; Fe/Zn-MMT/GCE: iron/zinc cation–exchanged
montmorillonite catalyst on glassy carbon electrode; MIOPPy-AuNP/SPCE: screen-printed carbon electrodes modified with molecularly imprinted
overoxidized polypyrrole and gold nanoparticles; MWCNTs/GCE: multiwalled carbon nanotubes, modified glass carbon electrode; PtNPs/C/GCE:
platinum nanoparticles supported on carbon-coated glassy carbon electrode; UV-DNA/GCE: UV irradiated DNA film modified glassy carbon electrode;
MIP/MWCNTs-AuNPs/GCE: molecularly imprinting polymer and gold nanoparticles modified multiwalled carbon nanotubes, modified glass carbon
electrode.
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where σ is the standard deviation of a blank (n = 20) and
k is the slope of the calibration curve. Therefore, the limit of
detection is estimated to be 0.0260μmol/L.

Because tetracycline is one of the ECs, there is no official
permitted limitation of tetracycline in water at present. It is
no other than comparison of detecting performance of
MIL-53 (Fe)/GCE and other tetracycline sensors can be used
to evaluate the detecting efficiency of MIL-53 (Fe)/GCE. For
this purpose, the parameters of detection techniques, linear
range, and limit of detection of MIL-53 (Fe)/GCE were com-
pared to other reported tetracycline sensors. As one can see
in Table 1, the performance of MIL-53 (Fe)/GCE is compa-
rable with those of others, even higher in some aspects (espe-
cially the detection limit). The comparison indicate that
MIL-53 (Fe)/GCE is an effective sensing platform, which
can sufficiently meet the requirement of tetracycline detec-
tion application.

3.5. Selective Study. To evaluate the selectivity of the electro-
chemical sensor for tetracycline, the interfering substances
(with significantly high concentrations than tetracycline)
that may occur during the detection of tetracycline were
studied. As shown in Figure 6, typical organic interferences
such as phenol, hydroquinone, and catechol have a little
effect on the detection of tetracycline. When inorganic ions
such as Ce3+, NO3-, K+, Cl-, Mn2+, Na+, and F- was added,
there is no significant change in the amperometric
response of tetracycline. When other antibiotics (such as
amoxicillin, ciprofloxacin, and norfloxacin) are present in
the solution of tetracycline, there is almost no effect on
the detection of tetracycline. The above results indicate

that MIL-53 (Fe)/GCE has a high selectivity to detect
tetracycline.

3.6. Reproducibility and Stability of Modified Electrodes. For
the purpose of characterizing the repeatability of the sensor
for tetracycline detection, seven different glassy carbon
electrodes were applied to prepare seven different MIL-53
(Fe)/GCEs, and their tetracycline detection performance
were measured. After 7 parallel measurements, the relative
standard deviation (RSD) was obtained as 7.3%
(Figure 7(a)), showing that the sensor has a high repeat-
ability to detect tetracycline. For the purpose of investigat-
ing the stability of the sensor, 100 cycles of voltammetric
scanning were performed. As indicated in Figure 7(b), after
100 CV cycles, there is no significant change in the reduc-
tion peak current, showing that the sensor has a high sta-
bility. The periodic stability of the sensor was evaluated,
too. 3 weeks later after MIL-53 (Fe)/GCE was placed in
air at RT, the sensor was employed to measure tetracycline
via DPV again (detection conditions are the same as
above). The results showed that an initial Ip value of more
than 96% was retained (Figure 7(c)), showing the high
period stability of the sensor.

3.7. Application in Actual Water. Natural water samples
including tap water and river water were used to evaluate
the practical application of MIL-53(Fe)/GCE. Tetracycline
(with three concentrations of 0.321μM, 0.641μM, and
1.278μM) were spiked into the above actual water samples
due to no tetracycline being detected in the original sam-
ples. The recovery results are shown in Table 2. One can
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Figure 6: Amperometric response of MIL-53 (Fe)/GCE to tetracycline (1.278μmol/L) coexistent with different interfering substances (other
antibiotics interferences with 10 times concentration (12.78μmol/L): amoxicillin, ciprofloxacin, and norfloxacin. Typical organic
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elsewhere. The DPV response of the sensor to bare tetracycline was set as the value of 100%.
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see that the sensor has relative high recovery rates in actual
water.

4. Conclusion

An electrochemical polymer sensor of tetracycline based on
MIL-53 (Fe) was successfully developed in this work. It
shows high tetracycline sensing performance in concentra-
tion range of 0.0643μmol/L-0.769μmol/L and 0.769-
1.53μmol/L, and the LOD can reach 0.0260μmol/L. The
sensor exhibits high reproducibility, anti-interference ability,
and stability. Moreover, it can be efficiently used in actual
water bodies. The polymer sensor can be facilely prepared
and applied with high sensitivity. It has a high potential in
practical application of trace tetracycline detection.
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Figure 7: (a) The peak current values of DPVs of 1.278μM tetracycline in 1M H2SO4 over 7 different MIL-53 (Fe)/GCEs. (b) The CVs of
0.641μM tetracycline in 1M H2SO4 detected by MIL-53 (Fe)/GCE in the first and 100th cycle. (c) The Ip values of DPVs of 1.278 μM
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Table 2: Detection of tetracycline in tap water and river water.

Sample
Added tetracycline

(M)
Found tetracycline

(M)
Recovery

(%)

Tap water 3:21 × 10−7 3:61 × 10−7 112.46

Tap water 6:41 × 10−7 5:97 × 10−7 93.14

Tap water 1:278 × 10−6 1:06 × 10−6 82.94

River water 3:21 × 10−7 3:70 × 10−7 115.26

River water 6:41 × 10−7 6:95 × 10−7 108.42

River water 1:278 × 10−6 1:35 × 10−6 105.63
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