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ABSTRACT 

In the present work, a direction of arrival estimator, under spread spectrum reference of signal-assisted radio operating 
in a Rayleigh fading channel, is proposed. The analysis, which is applied to general receiver antenna array configura- 
tions, demonstrates the high performance of the estimator which is due to the double dispreading (code word and refer- 
ence signal). The probability distribution function of the estimator is extracted and the system’s robustness in regard to 
large number of interferers is demonstrated. 
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1. Introduction 

Under the pressure of the telecommunications require- 
ments, in 4G and much more in 5G [1], radios must be 
equipped with high performance systems that could ac- 
quire and use all available information about the channel 
[2]. Here we focus on Direction of Arrival (DOA), esti- 
mation. The system is assumed to be implemented in 
every carrier of the multicarrier spread spectrum system 
[1]. Both spread spectrum technology and the informa- 
tion of the reference/pilot bits are employed. Indeed, af- 
ter the code word dispreading of the array’s output vec- 
tor, the pilot signal is used to perform the second dis- 
preading. The resulted vector is used as the weight vector 
of the array. The produced power in the far field is writ- 
ten in quadratic form and its average is computed. The 
maximum of the produced beam is the DOAs estimate. 
In the current work, the functionality of the proposed 
system is addressed and its performance is, both analyti-
cally and numerically, verified. In fact, after the Prob- 
ability Distribution Function (PDF) of the estimator is 
extracted, its potential to cope with very large number of 
interferers exhibiting fine resolution is demonstrated.  

The paper is organized as follows: First, in Section 2, 
the signal and system models are given for an uplink 
scenario of a spread spectrum system. Then, in Section 3, 
the double dispreading function is studied and in Section 
4 the proper convergence of the far-field is demonstrated. 
The PDF of the estimator is extracted in Section 6 where 

its statistical properties are presented. Numerical evalua- 
tion of the proposed system’s performance follows and 
last, conclusions are stated. 

2. Signal and System Model 

Consider an uplink scenario in an asynchronous spread 
spectrum system with P mobile users. Let  

      T
1p p p pb b i b N   b         (1) 

be an N-bit sequence for the p-th user with the i-th bit 
equal to    1pb i   . Subscript T denotes the transpose 
operation. Also, let 

      T
1p p p p Gc c i c P   c        (2) 

be an G -chip sequence for the p-th user with the i-th 
chip equal to 

P
   1pc i   . pb  is spread by pc . Thus, 

the respective transmitted signal can be represented by a 
1GNP   vector: 

 TT T
p p p x b c                  (3) 

where   is the kronecker product. 
Since, the uplink operates asynchronously the or- 

thogonal property of the code vectors breaks down and 
their elements should be modeled as independent identi- 
cally distributed (i.i.d.), binary RVs with zero mean. The 
same mathematical modeling is given to the data bits 
from the different incoming signals. 
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To represent the received signal one has to consider a 
receiver with an antenna array. So, we assume that the 
array consists of M elements and receives signals from P 
users that arrive at the array from different directions 

1 2, , , P   . The direction—response vector associated 
with the p-th user is given by  pa . The respective 
signal can be given in the form of a GM NP  matrix 
with elements: 

  T
p p ph    py a x                (4) 

ph  is the received complex signal amplitude. The ph  
random variable (RV), has a Rayleigh PDF and the phase 
of ph  is uniformly distributed in the domain (π, +π). 
At this point we make the usual and practical assumption 
that the fading process is constant for a time period of a 
block of Ν successive bits. 

The received base-band signal across the receiving 
antenna array can be expressed as: 

P

p
p

 y x N                   (5) 

where  is an GN M NP  matrix with elements repre- 
senting spatially and temporally white complex Gaussian 
noise with zero mean and variance  2

GNP . 

3. Double Dispreading Function 

In order to pick out the signal of the p -th user, a code- 
matched filter containing the specified, and properly time 
aligned, PN sequence, pc , is applied to y  performing 
the first dispreading function: 

 

   

T

T

c
p p p pp p p

P
c p pp p p p

p p p

h r

h r






     

 
      
 


z y c a b

a b N c
     (6) 

where we have defined:  

 T T;c c
pp p p G pp pr P r    c c c cp          (7) 

It is easy to prove that: 

   2

, ,0;c c
p p p pE r E r P G           (8) 

Thus, using the Central Limit Theorem, that holds for 
big PG, the RV ,

c
p pr  is a Gaussian random variable with 

zero mean and variance equal to PG. 
Also for the term  pN c  it is: 

   2 20;p p ME E I      N c N c GP     (9) 

where MI  is the M×M unit matrix. The Central Limit 
Theorem holds for this case also. 

Now, assuming that there exist a reference signal, , 
which is highly correlated with 

b
pb , we can perform the 

second dispreading forming the inner-product of pz  and 

: b

 

    

c b
p p p pp pp p

P
c b

p pp pp p p
p p p

b h r r

h r r






     

 
       
 


w z a

a N c b
   (10) 

In (10), using pb b , we have defined: 

 T ;b b T
pp p p pp pr N r p    b b b b         (11) 

The average value of the pw  vector, using Equations 
(8), (9) and (11), reads: 

   p p GE h N P p   w a          (12) 

The previous equation can be used to give the array’s 
response vector for the signal of interest (SOI). This can 
form the basis for the development of a robust DOA es- 
timation algorithm. 

Using (12), the angle of arrival SOI  can be computed 
using various techniques. Here we use pw  to find the 
array’s power pattern. The DOA estimate is given by the 
angle of the pattern’s maximum. Details are given next. 

4. Convergence of the Produced Average 
Far-Field Pattern 

Using pw  for the array’s weight vector, the produced 
power pattern is given by: 

     H H
p p   a w w a            (13) 

This pattern can be farther improved by using the av- 
erage value: 

        
      

H H
p p

H H
p p

P E

E

  

 

   

   

a w w a

a w w a
      (14) 

So, we define the average power pattern by using the 
following: 

      ; H H
p pP R R E      a a w w    (15) 

Finally we have: 

     

       

 

2 2 2

2 22

, ,

2

HH
p p p G p p

P Hb c
p p p p p p p

p p p

p

R E h P N

h E r E r

 

 

      

 
    

E




 

  



w w a a

a a

N c b

(16) 

Equation (16) is produced due to the fact that the vari- 
ous terms of the summation are mutually uncorrelated. 
Also, it is easy to prove: 

   2 2 2
, ;b

p p p M GE r N E I P N      N c b  (17) 
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Using (17) and (18) in (16) and inserting the result in 
(15) gives: 

   

 

2 2 2

2

2

p G p

P

p G p
p p p

G

P h P N G

h P N G

P N

 






   

 
    
 

  

      (18) 

where 

         H H
p p pG        a a a a      (19) 

is the array’s power pattern when the maximum is to- 
wards the p-th incoming signal. 

To study the pattern’s convergence we can write (18) 
as: 

 

   

2 2

2
2

2

G

P
p

p p p
p G G

p p

P

P N

h
h G G

P N P N



 





                        


 

(20) 

Now it is obvious that increasing ΝPG, which means, 
increasing the Processing Gain and increasing the num- 
ber of pilot bits, under the assumption that fading and 
DOAs remain constant, (20) comes to the limit: 

   pP G                  (21) 

which results that DOA estimation gets more accurate. 
This limit does not depend on the number P of the in- 
coming signals. Thus, the method can give the correct 
result assuming that Ν can get an adequate value. 

In the following we study the statistical properties of 
the proposed estimator. 

5. Statistical Properties of the DOA 
Estimator 

In the literature, there are methods addressing the statis- 
tical properties of DOA estimators. We proceed as in [3] 
and we assume that the signal to interference plus noise 
ratio (SINR), is sufficiently high so that the zeros of  

 ˆP   are within one Newton iteration step of the true  

p : 

   p pP P p                  (22) 

 pP   and  pP   denote the first and second de- 
rivatives of the power pattern with respect to   calcu- 
lated at p . Using (20), (22) becomes: 

   

   

2

2

2

2

P
p

p p p p p
p G

p p
p

P
p

p p p p p
p G

p p

h
h G G

P N

h
h G G

P N

 

 

 





  
    
  
   

 
  
    
  
   





 

 

 (23) 

By definition we have that: 

  0p pG                    (24) 

Also, for the denominator of (23), approximately (in- 
creasing the GP N  product), the next holds: 

   
2

2 P
p

p p p p p
p G

p p

h
h G G

P N
 



  
   
  
   
     (25) 

Using (23)-(25) after rearranging the various terms, 
(22) becomes: 

 

 

2

2

P

p p p
p p p

p

p G p p

h G

h P N G



 




 
 

 
 

 

 


         (26) 

The extraction of the PDF of the RV given in (26) is 
not an easy task since the summation terms can take 
negative values [4]. We start from (26) which is written 
as: 

    

 

2

2

;

sign

p
G

P

p p p p p
p p p

p p p

P N

G h G

h G

   


  

 



  


 
   

 

 

 



   (27) 

The   variable can take the following form: 

 

 

2

2

;
P

p p p
p p p

P

p p p
p p p

h G

h G

    

 





  







 
    

 

 
  
 








    (28) 

where P  are the terms with  

    sign 0p p p pG G 





  . 

So, there are P  positive variables that constitute the 
  RV and P  negative variables that their absolute 
values are summed to form the  variable. Now, the  

RV  2

p p p ph G     is distributed like: 
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   

   2

1
e

;

p

p p

p

G
p p

p p

p p p p p

f u
G

E h G G



  








   
         (29) 

 pu   is the unit step function. Equation (29) comes 
from the fact that ph  is Rayleigh distributed with the 
expected value of the square amplitude equal to p . 
The conditioning of p  on the angle of arrival of the 
desired user p  is expressed through the  p pG  . 

After this, it can be easily shown that the RVs   of 
(28) are distributed like: 

   
1

e p
P

q
p

p

f c u


  











            (30) 

where 

      
 

1

1

;
p

p p p p p
s q

P
p

p p

q G c s q s

q
s

s q










      

 


  (31) 

Now let us define the variable: 

u                    (32) 

The random variable  is distributed like: 

 
0

1 1

1
d

2 2 2

e 0

e 0

p

p

qP P
p p

q
p p p p

u u
f f f u

c c

q q

  





 

 

 

 

 
 


   






 

         
   

             



 
0

0

 

(33) 
The RV λ is distributed like: 

   

     1 2

e

; ;

q

p p p p

f q u

q G E h G G


  

p







         (34) 

Let us now proceed to the RV ρ. The PDF of ρ is given 
by the following: 

     

 
 

0

2

2
1 1

d

0

0

P P pp p

p p
p

f f f

q qc c
q

q q q q

  

 

    

 

 

 
 

   







 



          



  



 
  (35) 

Before closing the section devoted to the statistical 
properties of the estimator a note is in order. The PDF of 
the estimator is conditioned on the DOAs of the signals 
not of interest and the SOI. Nevertheless, it can be easily 
proved that the averaging over the DOAs still gives 

 and .   1

GP N     2
var GP N

 

6. Numerical Performance Evaluation 

In the current section a verification of the extracted PDF 
of the DOA estimator is given. A computer code was 
written to simulate the receiver and the signal models. 
The statistical sampling (Monte Carlo), simulation pa- 
rameters are as follows: The signal to noise ratio, in the 
case of a single receiver, is the same for every user. All 
users have the same power. The average fading power is 
set equal to 1 while the fading is assumed to be Rayleigh. 
A Uniform Linear Array (ULA), having seven omnidi- 
rectional elements with λ/2 interelement distance is used. 
The number of interfering signals is set equal to 30. The 
DOA of the SOI is set equal to 30˚. The DOAs of the P 
users are uniformly distributed between . The pro- 
cessing gain is set equal to 16. The PDF of the estimated 
DOA is given in Figure 1. 

60 

The continuous curve is produced from Equation (21) 
while the histogram presents the Monte Carlo extracted 
PDF after using 103 realizations of the spatial signature. 
The horizontal axis is the estimation angle in degrees 

, while in the vertical axis, the absolute occur- 
rence of the events is represented. For example nearly 
300 (287), times out of a total of 103 the estimator pro- 
duced an outcome between 30˚ ± 0.025˚. If we charac- 
terize as accurate an estimate in the area 30˚ ± 0.5˚ then 
the estimator produces an accurate estimate approxi- 
mately 90% of the trials. 

29 - 31 

7. Conclusions 

A double dispreading based DOA estimator is proposed 
for a spread spectrum reference of signal-assisted radio. 
A closed form relation for the PDF of the estimator is 
extracted to assess its performance. Instead of following 
the usual path, assuming DOA estimates corrupted by 
simple additive white noise, the realistic scenario of 
Rayleigh fading is addressed. 

From the theoretical derivation, the estimator’s ability 
to provide accurate estimates, even in the case of large  
 

 

Figure 1. The PDF verification of the estimator. 
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number of interferers, is demonstrated. 
The proposed DOA method is readily integrable in the 

Multicarrier spread spectrum systems [1]. 
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