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Abstract

In this paper, the ill-posedness of derivative interpolation is discussed, and a
regularized derivative interpolation for non-bandlimited signals is presented.
The convergence of the regularized derivative interpolation is studied. The
numerical results are given and compared with derivative interpolation using
the Tikhonov regularization method. The regularized derivative interpolation
in this paper is more accurate in computation.

Keywords

Nonband-Limited Function, Derivative Interpolation, Ill-Posedness,
Regularization

1. Introduction

The computation of the derivative is widely applied in science and engineering
[1].
In this section, we present the problem of finding the derivative of non-band-

limited signals by the sampling theorem.

Definition 1: Suppose a function f € L*(R), its Fourier transform f is:

f(a)):F(f)(a)):f:f(t)e_i’”tdt, weR (1)

Definition 2: A function f e L (R) issaid to be Q -band-limitedif
f (a)) =0, for every w¢ [—Q,Q] . Otherwise, it is non-bandlimited. Here f is
(2] [3].

the Fourier transform of f

The inversion formula is

F‘l(f)(t): f(t)

2

ij‘w f(a))ei”’tda), ae teR
21

DOI: 10.4236/am.2022.131008

Jan. 26, 2022

87 Applied Mathematics


https://www.scirp.org/journal/am
https://doi.org/10.4236/am.2022.131008
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/am.2022.131008
http://creativecommons.org/licenses/by/4.0/

W. D. Chen

For band-limited signals, we have the Shannon sampling theorem [2] [3].
Shannon Sampling Theorem. If f e L?(R) and is Q -band-limited, then

it can be exactly reconstructed from its samples f (nh):

£(t)=1im 3 SINCQ(t—nh) f (nh) 3)
N—op__N
sinQ(t—nh)

where SINCQ(t—nh):= and h=mn/Q. Here the convergence is

Q(t—nh)
in L* and uniformlyon R.

In [4], Marks presented an algorithm to find the derivative of band-limited
signals by the sampling theorem:

9 (t)= 3 [SINCQ(t-nh)]" f (nh). @)
n=-w

Here, again, the convergence isin L° and uniformlyon R.

In [5], a method of numerical differentiation is given by low degree Cheby-
shev.

)

In this paper, we will consider the problem of computing £ from the sam-

plesof f in the presence of noise.
f (nh) = f_ (nh)+7(nh), (5)

where fg(nh) is the exact signal and {r(nh)} is the noise with the bound
5>0, n(nh)|£5.

Formula (4) is not reliable due to the ill-poseness. In [6], a regularized deriva-

tive interpolation formula is presented for  -bandlimited functions. In this
paper, a regularized derivative interpolation formula will be presented for non-
bandlimited functions. Its convergence property is proved and applications will
be shown by some examples. In the case non-bandlimited functions, the error
estimate is different and the step size A of the samples is necessary to be close to

Zero.

2. The Regularized Derivative Interpolation

In this section, we present the regularized derivative interpolation by the sam-
pling theorem in the pair of spaces (C,ﬁB, |°C) . Here
Cly = {f(k) :fis non—bandlimited}

with the norm of C(; defined by
[# @), =max| % @)= )

ks teR

’
oo

and
I” = {{a(n) nez}:fa]. < oo}
is the space of bounded sequences with the norm

[al- = supfa(n)]
nezZ
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We define the operator
S:Cs > 17, by st :={f (nh):nez}.

Here f (nh) is the coefficient of [SINCQ(t )}(k) in (4).
Remark 1. The problem of computing f* '(t) from f (nh) is an ill-posed

problem.
To solve this ill-posed problem, we introduce the regularized Fourier trans-

form [7] [8] [9] [10] [11]:
Definition 2. For « >0 we define

F, [1)(0) = Flf ()= e ©
where
fy ()= £ (1)

1+ 2na + 2nat

is the function f (t) multiplied with the weight function
K, (t):=(1+2na + 2nat? )71
Definition 3. Given { f (nh) ‘ne Z} in 17, define

£ (t):= 3 SINCQ(t—nh)K, (nh) f (nh).

n=-—o

The infinite series is uniformly convergentin R forany « >0.
By the differentiation of f,(t) in Definition 3, we obtain the regularized de-

rivative interpolation:

f/(t)= i[SINCQt nh)] K, (nh) f (nh)
B 7)

g

2 | cosQ(t—nh) sinQ(t-nh

= ( )_ ( 2) K, (nh) f (nh).
n=— t—nh Q(t—nh)

This derivative is well defined since the infinite series is also uniformly con-

vergenton R.
Lemmal.If f isnon-band-limited and f €L}, then

1
g-alv-l (14 2na \?
F[f(t ]_4naaL’° u)e ™ “ldu where a.:( o j .

It can be seen from the convolution
A 1 ~ -
=—TF=*K,
27

fW

where Ka (a)) = Zie_“‘w‘
ax

the convergence of the regularized derivative interpolation we will need the de-

is the Fourier transform of K, (t). For the proof of

finition of periodic extension of the function e"* [12].
Definition 4. (ei”t)p[i . denotes the periodic extension of the function
e defined on the interval [—Q,Q] to the interval (—00,00) with period
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2Q.

The next Lemma is from [12].

Lemma2.If f e L' (—o0,) , then

0 1 o A .
SINCQ(t—nh) f(nh)=—| f et d
Zw (t=nh)f (nh)=2" 1. (@)(e™) 1 g 9@

foreach teR.

Remark 2. If f is Q -band-limited, Lemma 2 reduces to the Shannon sam-
pling theorem.

Lemma 3. For bounded f on [-Q,Q]

1
4n’ac '[\“’\ZQ

a).f‘u‘SQ f (u)efa\u*w‘du‘ do=0 (0(1/2 )

The proofis in [6].

1

L+2na jz which is defined in lemma 1.

Lemma 4. Suppose Q>0 and a= (
2na

For u>Q,

I |5"|e_a‘u_w‘0|a)=i ou+| -+l | g l)e@m,
‘w‘ZQ a a a a

And if ais large enough, by omitting higher order infinitesimal we have

_alu- 2u
I a)|e ol < 22
‘(u‘ZQ a

Proof.

.L)ZQ e dow = J; we o+ I:C 0w

= E{ZU +(—Q +£)ea(9“) }
a a

—aju—a| _ —a(u-0) _l 1 sl
'[‘US—Q|w|e | ‘dw_.[ws—g(_w)e ( dw_g(g_{—gje (@ ).

1
1+2mx)2 .For u<-Q,

2na

[ alole™ “do= ] (—Q +1j e _2y +1(Q +1j g2
‘w‘ZQ a a a a

And if ais large enough we have

Lemma 5. Suppose >0 and a:= (

—alu- -2u
I a)|e au-elgpy < 222
‘w‘ZQ a

Proof.

J. 0=Q

L}S_Q | e lde = —JL we e — I

u
= EK—Q +£j ) — ZU}.
a a
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Lemma 6. If uf(u)e L'(R) then

1
4n’aa L”\ZQ

a)jMEQ f(u)e’a‘”’w‘du‘da) <

uf (u)‘du.

2n(1+2nar) L“\ZQ

Proof. By lemma 4 and 5

Joo “’I\ oo T duldo <[ Jof | (u]e ™ dude
- uzQ ‘du‘[“’PQ w' h w‘dw—i—J.u ‘ ‘dujru\>ﬂ w|e Bl w‘dw
2u 2
Lol T e [ [F )2 =2 ]
So
LJ. of f(“)efa‘m‘du‘daK;j' qu(u)‘du
4n*aq ol =0  2n(1+ 2mear) Y0 '
Lemma 7. Assume of (0)e *(R) and fel”[-Q,Q]. As a—0, we
have
1 - 1 .
el (@0 =0(a)+ 3] fof ()fdo
Proof.
= (o)]do= 1j o [" F(u)e ™ “dulde
fopel” le22| ™ 4rag '
—a\u |
= = J‘M o f du‘da)
S il e T2 o
1 —aju—o)|
" Ar’aa J‘\“’\ZQ a)J‘\U\ZQ fue | ‘du‘dw.
By lemma 3
1 £ —aju—o)
Ar’ac J.\“’\ZQ wJ.\U\SQ F(u)e | ‘du‘da) - O(a]ﬂ)'
By lemma 6
1 £ —alu-o 1 ~
o ot e T (W) d“‘da’smjum uf (u)du.

In order to prove the convergence property of the regularized derivative in-
terpolation we will need the next lemma.

Lemma 8.If f isnon-band-limited, f eL”[-Q,Q] and of (0)e L'(R),
then

(nh) £ (nh)=[K (t ]‘

wf (a))‘dw

1
= 1
—0|a? |+— T
(0{ J+2n(1+ 2750:)'[\“)\29

Proof.
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d= I i SINCQ(t—nh)K, (nh) f (nh)-K_ (t) f (t)]

L n=—0

f1

== (efiwt)p[_gyg] wa (a))da)— K, (t) f (I)H

| 2

1 (= 1

= —iwt £ ® ot £
= 2 (& gy o (@)do— [ ey (w)dw}

_ 1 = —iwt —iwt "o
=l _w[(e )p[_QVQ]—e } fu (0)do

1 s in A
= EJ"W‘EQ[(la)e t)p[,glg] —iwe ‘} f, (co)da)‘

1 “
s—j )
T ‘wPQ

f, (a))‘da)
Then by Lemma 7, we can see the estimate is true.
Lemma 9. If we choose a=a(5) such that o -0 and 5/Na =0 as
8 — 0, then

3" [SINCQ(t-nh)] K, (nh)n(nh)

n=-o0

= 0(6)+0(5/Va).

The proof is in [6].

We are now in a position to state and prove our main theorem.

Theorem 1. Suppose f (nh) = f; (nh)+7n(nh) where || <& and f. el
is non-band-limited, fE el” [—Q,Q] and a)fE (a)) ell (R) . Then if we choose
a :a(5) such that a(ﬁ)—)O and 5/\/@»0 as 6 = 0,then

" fa’ (t)_ fé (t)"C[—T,T] < O[a2J+O(5/\/E)+;Iw>Q @

2n(1+2na)

fe ()| do
Proof. Suppose t €[-T,T]. Using Formula (7) and Lemma 8, we obtain
£2(0)- 1 (1) = 3 [SINCQ(t=nh)] K, (nh)[ fe (ah)+ 7 (nh)]- ¢ (1
- n_iw[swca(t—nhﬂ’ K, (nh) fe (nh) - £ (1
z [SINCQ(t-nh) ] K, (nh)7(nh)
=nni;swm(t—nh>]’ K, (Ah) T (nh)=[K, (6 fe ()]
+[K, () fe (0] = 12(6)+ 3 [SINCQ(t-nn)] K, (nh)(nh)

n=—0

1
= 1
~0|a? |[4—r
[a ]+2n(1+ 27:05)"‘\‘”\29

(2na +2mat®)(1+ 2na + 2rat®) £ (t)+ dna fe (1)

!

wf, (a))‘dw

(1+2na +2nat?)

DOI: 10.4236/am.2022.131008 92 Applied Mathematics


https://doi.org/10.4236/am.2022.131008

W. D. Chen

+ . [SINCQ(t-nh)] K, (nh)(nh)

1
N N
2n(1+ 2n) Sk

+o(a)+n§w[S|NCQ(t—nh)]' K., (nh)z(nh).

fe (a))‘da)

By Lemma 9, we have

" fa’ (t)_ fé (t)"C[—T,T] O[ ] (6/\/7) WI‘”‘ZQ @

Remark 3. According this theorem, if we choose Q to be large enough, and
a :a(5) such that a(5)—>0 and 5/1/0((5) —0 as 0 >0, we can have

good approximation.

fe (a))‘da)

3. Derivative Interpolation of Higher Order

In this section, we prove the convergence property of the derivative interpola-

tion formula of high order:

£ (t) = i[SINCQ(t—nh)](k) K, (nh) f (nh). (8)

Lemma 10.

u ao : _1I I et a
I, = ofe da):lz( a')*lpk (ue —Q"e*)
=0

where A = Hljzl(k— j+1) and A} :=1.

Proof.
1 au — k < (_1)|AI< -1 ~au —I . a
I =g(uke ~-Qke aﬂ)—glk&:m:; e (e - e,
Lemma 11.

Jk (Q) = _L))O k e dp z '?1(-1 Qk 1 —aQ
The proof is similar to the proof of Lemma 10.
Lemma 12. If u>Q, then

J‘wZQ|w|k efa\u—w\da) —p l, +eaqu (U) <Cu*.

and
J.w£70|a)|k e ldw=e"J,(Q).

Proof.

Juzo

0
—e [ o'e*do+e® [ oo do=e1, +e"J, (u)<Cut.

J.w§—§2|a)|k e_a‘u_w‘da) = (_1)k J.(ggfg wke_a(u_w)dﬁ)
= (—1)k g~ J‘wgfﬂ ofedp = e L,lzg a)lke_awlda)l _ e’a”‘]k (Q)

60|k —aju— m\d J'(“l " e—a(u—m)d o+ J':’ o~ e—a(m—u)d o
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where o =-o.
Lemma 13. If ‘f‘SM on [-Q,Q] and >0

L £ —alu-o|
an bl o f (W)€ a0 =0(a)

Proof.

‘ M o eaQ
LHS <2 @ ?e'a‘”ea dCOZTJ
@2Q 47c a a 2n a‘a "9

e’ -lgma _ 1/2
Z |+l 2,2 |+1 ( )

2rta’a Sa n*ala 3 a

K —
we *dw

Lemma 14. If o*f (a)) IS Ll(R), then

1
An*aa '.’\‘”\29

o IMZQ f(u)e‘a‘“""‘du‘da) < CJ.‘U‘ZQ‘UI( f(u)‘du

where C =const.>0.

Proof.
nl _WI\ =0 ‘:(U)‘d f‘ " o e do =M, + M,
= ol @] Jol €00
+ﬁfm U)‘dUJM|w|k ool
B ﬁjum‘ ‘?(U)‘du o e ™o
v ffau] ol e o
ByLemma 12, M, <C[ _Iu“f(u)jdu. Similarly, M, <C[ _[u*f (u)|du

Lemma 15. If feL‘”[— , ], w f(a))eL(R) and a — 0, then

1 K £ l
;J.‘W‘ZQ o f, (a))‘da) < O[az j+C oo

where C =const.>0
Proof. By Lemma 13 and 14

J.‘w‘ZQ

o" f(a))‘da)

k £ —aju—a|
o jMSQ f(u)e du‘da)

k £ —aju-a|
o[ o (e du‘da)

o, (a))‘da)ﬁ

1
4r’aa J.\“’\ZQ

b
Arlag Cleke

o[« il fo

Lemma 16. If f is non-band-limited, fel” [—Q,Q] , o f(w)e Ll(R)
and a — 0 then

(a))‘da)

2 3 [sINCO(t-nh)]Y K, (nh) f (nh)[ K, (t) f (t)]"

1
=0|a? [+C
(a JJ’_ J“w‘zﬂ

" f(a))‘da)
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where C =const.>0.
Proof. Since

[SINCQ(t-nh)]" K, (nh) f (nh)

Ms

n

—0

is uniformly convergent,

d=| 3 SINCQ(t-nh)K, (nh)f (nh)-K, (t) f (t)}(k)

| N=—0

) (k)
_ 1 (em)p[,gg] f (a))da)— K, (t) f (t)}

[2n’

o

(k)
_ iot £ 1 (= iot £
= _E _m(e )p[_sm] f, (a))da)—z—n_[_we f, (w)da)}

1 «© iwt iot (k) £
=l _w[(e )p[_m}]—e ] fy (0)dw

1

-~ j‘w‘m[(ia))k () eiﬂ i (a))da)‘

" f(w)‘dco

< %J.‘w‘m " fW (a))‘da) = O(au2)+C

‘(D‘ZQ

Lemma 17. For te[-T,T],if kis even

(K. (6)]" —i[ - Tk) ~0(a*?),

 2nal| a?+t?
and if kis odd
(k)
(k) 1 1 (k+1)/2
K (t =—|——| =0 ,
[ « )} 2na[a2+t2} (a )
as a—0.

Proofisin [6].
Lemma 18. For te[-T,T],

[K, (1) fe (0]~ 1 (1) = 0(a).
Proofisin [6].
Now we can state and prove a version of Theorem 1 for higher order deriva-
tives.
Theorem 2. Assume " f(w) el'(R) and fel” [-©,Q]. If we choose
a=a(5) such that a(5)—>0 and 5/@—)0 as & — 0, then we have
the estimate

[19@)- 1 o)

cl-T.T

| < O[a;j+0(5/\/g)+ij>Q‘wk fe (a))‘da)

Proof.
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(0)-1(1)

0

= > [SINCO(t- nh]

=0

« (M) fe (nh)+7(nh) |- £ (1)
« (nh) fe (nh)— £ (1)

[SINCQ(t-nh)]" K, (nh)n(nh)

=

0

Z[ INCQ(t—nh)]" K

0
+

nN=-0
0

= ¥ [sINce(t-nh)]*' K, (nh) e (h)-[K, (1) fe (1)]"

=—0

=

K, () 1 ()] = 19 (t)+ 3 [sINcQ(t-nn) ] K, (nh)s (nh)
where .
> [siNce(t-nh)]* K, (nh)y (nh)
< [smcgt](k)% + §[3|Ncg(t—nh)](k) K, (nh)n(nh)
-0(5)+0(8]; K, (t)dx|=0(5)+0(s/va)
This implies

19 (1)~ 1 (1)

C[-T.T

| < O[a;J+O(§/\/;)+CLZQ‘a)k fe (a))‘da)

Remark 4. We will choose the regularization parameter by the experiment.
According to Theorem 2, a depends on &. If we choose a=kdé*, k>0,
0 < u <2, the assumptions of Theorem 2 are satisfied. If § is known, « can
be determined by discrepancy principle ([13]). The GCV and L-curve can be
used ([14] [15]) if & is not known.

4. Experimental Results

In this section, we give some examples to compare the regularized derivative in-
terpolation by sampling with the Tikhonov regularization method [16] [17].

In practice, only finite terms can be used in (8). So we choose a large integer N,
and use next formula in computation-

(1) = Z [SINCQ(t-nh)]"

n=—N

K, (nh) f (nh) 9)

where f(nh) isthe noisy sampling data given in (4) in the section of introduc-
tion. Due to the weight function, the series above converges much faster than the
series (3) of using Shannon’s sampling theorem. We give the estimate of the trun-

cation error next

1
TR=0( 1)
Na
So if Nis large enough, the truncation error can be very small.
1
Suppose f; (t)=—s.
ppose fr (t)=r—3
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Then
f, ()= e .

So f.(t) isnotaband-limited signal.
In examples 1 and 2 we consider f = f_ +7.
Example 1. We choose the noise

n(nh) =6 *sgn{cosQ(t, —nh)/Q(t, —nh)}

where Q =15, t; =0, and thesignals f = f. +7 with §=0.001. We choose
a =0.05. Theresults of f'(t) and f"(t) arein Figure 1 and Figure 2.
Example 2. We choose the noise to be white noise that is uniformly distri-

buted in [—0.005,0.005].We choose « =0.05. The results of f'(t) and f”(t)
are in Figure 3 and Figure 4.

0 —

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10 -8 -6 -4 -2 0 2 4 6 8 10
First Derivative Interpolation by Reg Sampling Algorithm

Figure 1. The result of Example 1. The solid curve is f/(t). The dashed is the reg deriv-
ative f/(t).

-10 -8 -6 -4 -2 0 2 4 6 8 10
Second Derivative Interpolation by Reg Sampling Algorithm

Figure 2. The result of Example 1. The solid curve is f/(t). The dashed is the reg deriv-
ative f/(t).
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_1 Il Il Il L Il 1 1 1 1
-10 -8 -6 -4 -2 0 2 4 6 8 10

-10 -8 -6 -4 -2 0 2 4 6 8 10
First Derivative Interpolation by Reg Sampling Algorithm

Figure 3. The result of Example 2. The solid curve is f/(t). The dashed is the reg deriv-
ative f/(t).

1 T T T T

1

4 6 8
Second Derivative Interpolation by Reg Sampling Algorithm

Figure 4. The result of Example 2. The solid curve is f/(t). The dashed is the reg deriv-

ative f/(t).

5. Conclusion

The computation of derivatives is a highly ill-posed problem. The regularized
derivative interpolation by sampling can be applied. The convergence property is
proved and tested by some examples. The numerical results are better than Tik-

honov regularization method.
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