
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: webers@hs-furtwangen.de, Stefan.vonWeber@hs-furtwangen.de; 

 
 

Physical Science International Journal 
 
26(3): 25-38, 2022; Article no.PSIJ.89400 
ISSN: 2348-0130 

 
 

 

 

Mass under the Membrane Theory of Gravitation 
 

Stefan von Weber a* and Alexander von Eye b 
 

a 
Faculty Mechanical Engineering, Furtwangen University, Jakob-Kienzle-Strasse 14,  

78054 Villingen-Schwenningen, Germany. 
b 
Department of Psychology, Michigan State University, 190 Allée du Nouveau Monde,  

34000 Montpellier, France. 
 

Authors’ contributions 
 

This work was carried out in collaboration between both authors. Both authors read and approved the 
final manuscript. 

 

Article Information 
 

DOI: 10.9734/PSIJ/2022/v26i330314 
 

Open Peer Review History: 
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,  

peer review comments, different versions of the manuscript, comments of the editors, etc are available here: 
https://www.sdiarticle5.com/review-history/89400 

 
 

Received 15 May 2022  
Accepted 25 July 2022 

Published 28 July 2022 
 

 

ABSTRACT 
 

The Cosmic Membrane theory of gravitation (CM) implies Newton’s absolute space. We identify the 
homogeneous vector field used by us since 1994 with the Higgs-field as source of the heavy mass. 
Following Randall and Sundrum, the introduction of the wafting layer outside the membrane solves 
the issue of the mobility of particles in a super-strong membrane. Starting with Feynman’s radius of 
excess, we obtain a depth of space of WRS = 1.432×10

6
 [m] of the gravitational funnel at the edge 

of sun. Using Chandrasekhar’s gravitational energy, we obtain the tension F0 of the membrane as 
F0=1.820×10

19
 [N/m

2
], and the vertical vector field acceleration AVFV, acting perpendicularly from 

the fourth spatial dimension on the membrane, with AVFV=1.148×10
5
 [m/s

2
]. The horizontal vector 

field acceleration AVFH, i.e., inside the wafting layer, is AVFH=1.330×10
5
 [m/s

2
], and acts as 

acceleration a=AVFH w’ with w’ the being slope of the membrane. The mass of the moved 
membrane in a moving gravitational funnel behaves as an inert mass, but yields a numerical value 
that is too small to explain the equivalence of heavy and inert mass. Assuming speed of light c for 
transversal gravitational waves, we obtain a first estimation of the mass distribution ρsurf of the 
membrane. The clay lump model of the relativistic increase of mass follows the assumption that the 
energy of the accelerating photons will act again half as mass and half as kinetic energy at the 
accelerated particle. Our result equals exactly Einstein’s SR result. 
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1. INTRODUCTION 
 
We have been working since the early 1990s – 
besides on statistical issues – on the 
rehabilitation of Newton’s absolute space. 
Important milestones include the works of 
Einstein, Kaluza and others, according to which 
our universe has more than three spatial 
dimensions, and, furthermore, Hubble’s 
discovery of the Nebula Escape [1], as well as 
the discovery of the cosmic background radiation 
[2]. Since 1994, we used the model of the cosmic 
membrane, which posits that the membrane 
expands as a balloon-shaped 3D-Brane in the 
4D-hyperspace. The current boom in 
cosmological brane world models supports our 
propositions [3-6]. Other ideas and suggestions 
come from research areas that are far from our 
own field of work, for example from Quantum 
Chromo Dynamics (QCD) or Quantum 
Electrodynamics (QED). 
 
In this article, we consider the physical property 
mass from a more phenomenological point of 
view as it is mapped out by the model of the 
cosmic membrane. Mass is a property of matter. 
It exists in the form of heavy mass and inertial 
mass. The heavy mass causes gravitation. Isaac 
Newton described the mutual attraction of heavy 
masses in his universal law of mass attraction, 
but he gave no explanation of the mechanism. In 
kinematics, the inert mass appears as the inertia 
of a mass. It takes a force to change the speed 
of a mass, i.e., in the cases of acceleration, 
deceleration or change of direction. 
 
The equivalence principle states that heavy and 
inert masses are equivalent. Experiments prove 
this with the high accuracy of 10 

-15
. Albert 

Einstein also realized the equivalence of mass 
and energy. Therefore, electromagnetic radiation 
has mass as well. In his GR, Einstein laid the 
foundations for all modern theories of gravitation. 
The mass of particles changes with speed. 
Therefore, considering impact processes, one 
calculates with conservation quantity m(v) = m /

2)/(1 cv . The quantity 1/
2)/(1 cv is the 

Lorentz’ factor of the SR and also used by us in 
[7]. The energy-momentum relation 

4222 2

cmcpE 


 is another universal law. 

 
In 1964, several teams of researchers [8-10] 
published nearly at the same time and with 
nearly identical results their insights into the 
origin of the mass. The best known is Peter 

Higgs. He postulated the existence of a new 
particle of the standard model, the Higgs boson, 
later named after him. Mass is created by the 
interaction of originally massless particles with 
the Higgs-field. In this process, the Higgs bosons 
are created, giving mass to the particles. Since 
2012, one has detected particles in the Large 
Hadron Collider in CERN near Geneva which fit 
the boson data given by Higgs. This fact has 
strongly increased the credibility of his and 
similar theories. A minor fly in the ointment is that 
Higgs' theory only explains about 1% of the 
mass. 
 
In 1967, Steven Weinberg applied Higgs’ theory 
to the theory of electroweak interaction [11]. In 
1977, George Savvidy posited that the vacuum 
should contain a not- disappearing real field 
which is the cause of condensates (particles) 
[12]. These condensates are an effective 
description of the vacuum. However, at 
extremely small dimensions, the vacuum can 
have a structure [13]. In parallel, bag models 
were proposed. A hadron (neutron, proton) is an 
encapsulated piece of distorted vacuum [14-16].  
Starting at the millennium, other theories have 
been developed on the base of Lattice QCD. The 
space is no longer homogeneous, but consists of 
a lattice of single points in space and time [17-
19]. However, for small distances, one assumes 
the theory of the continuous QCD.  
 
 An important suggestion for our model of the 
cosmic membrane came from Randall and 
Sundrum. In 1999, Lisa Randall and Raman 
Sundrum published a paper [20], in which they 
proved that the assumption of a 3D double 
brane, which is embedded in a non-compacted 
spacetime with 5 dimensions, can generate both, 
Newtonian gravitation and its refinements 
according to the GR. In this approach, the 
distance between the two branes is assumed to 
be very small, compared with the Planck length. 
This approach allows for more dimensions, but 
these had to be compact, and only if they are 
small enough. In their theory, the authors utilize 
the generation of gravitons as bosons of the 
gravitational interaction. The effect of the 
gravitons is quickly lost with distance from the 
first brane. This assumption explains the 
comparatively small gravitational interaction of 
matter. In a second paper [21], Randall and 
Sundrum forego the second brane, and instead 
assume a rapid drop in effectiveness of the 
gravitons with increasing distance from the 
brane. 
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2. THE REFINED MODEL OF THE 
COSMIC MEMBRANE 

 

The 3D brane expands in a way similar to a 
balloon that is inflated in a 4D hyperspace. A 
homogeneous vector field acts parallel to the 
direction of expansion and perpendicularly to the 
membrane. The vector field can easily permeate 
the undisturbed membrane [22]. One can 
imagine the whole model of the cosmic 
membrane as a sieve that is blown on. The 
vector field has the same effect as the Higgs 
field. Furthermore, we assume that a wafting 
layer is generated by the influence of the vector 
field directly above the membrane. The density of 
this layer decreases exponentially with the 
distance from the membrane, in a way similar to 
the decrease of pressure of our atmosphere with 
increasing altitude. This Randall-Sundrum 
wafting layer is the actual space in which matter 
resides and can move freely. Furthermore, we 
assume that a matter-free area of the wafting 
layer including the underlying membrane 
generates only little resistance to the vector field, 
but each kind of matter greatly increases the 
resistance. Examples from fluid mechanics of 
gases and liquids show that, for example, a 
laminar flow has much less resistance than a 
turbulent flow. We therefore postulate: 
 

2.1 Each Kind of Matter Increases the 
Resistance of the Membrane in the 
Homogeneous Vector Field. This 
Resistance Generates a Force that 
Bends the Membrane 

 

Additionally, we also postulate that, without 
motion, there is no mass. Either we have a wave 
with phase velocity c in undisturbed space, or we 
have a particle with matter waves of speed c, but 
group speed v. Fig. 1 illustrates the refined 
model of the cosmic membrane. The vector field 
acts perpendicularly from the fourth dimension, 
w, on the membrane. The jam of the vector flow 
generates the wafting layer. Inside the wafting 
layer, waves or particles consisting of matter 
waves move in x-, y- or z-direction. 
 

The waves and the resulting lateral displacement 
cause a perturbation of the flow of the vector field 
through the membrane. An additional jam occurs, 
which significantly increases the pressure on the 
membrane and bends the membrane. 
 

In the further course of this section, we quantify 
the interaction of the mass with the vector field. 
We consider a mass, e.g., the matter of our sun. 

The vector field creates a force effect, that is, a 
load that acts from the fourth dimension. It 
causes a gravitational funnel with spherical 
symmetry. The tension of the undisturbed 
membrane is F0 with unit [N/m

2
]. The 

decomposition of the radial force Fr and of the 
line element ds are shown in Fig. 2. 
 

 
 

Fig. 1. Membrane with wafting layer, wave 
and vector field 

 

 
 

Fig. 2. Decomposition of radial force Fr (Panel 
a) and of line element ds (Panel b) 

 
In the gravitational funnel, the tension of the 
curved membrane is higher than F0, but the 
increase is very small. One proof is the validity of 
Newton’s law of gravitation with an error of 10

-6
. 

That means, in addition, that the elasticity 
coefficient of the membrane has to be lower than 
10

11
 [N/m

2
]. The radial amount of tension F0 at 

point P is Fr. By the decomposition of Fr, we 
obtain the horizontal component F0 and the 
vertical component Fn .  It is physically obvious 
that the horizontal component F0 remains 
unchanged. We differentiate the line element 

22 dwdrds  under the assumption of ideal 

elasticity and obtain 
 

0

22

F

F

dr

dwdr

dr

ds r


 .                    (2.1) 
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Component Fr is the radial tension at point P with 
radius r from the center of the gravitational 
funnel. The vertical axis is w. With dw/dr = w’, we 

obtain 
2

0 1/ wFFr
 . 

 

The decomposition of Fr yields  
22

0

2

nr FFF    

or  
2

0

2 FFF rn  . With 
2

0 1 wFFr
 , we 

obtain  
 

  wFFwFFn
 0

2

0

22

0 1 .      (2.2) 

 
The section surrounding the center of the funnel 
in the constant distance r describes a sphere. 
The central load must equal the sum of the 
vertical components of all forces which pull at the 

surface of the sphere. We obtain  LFr n 
24   

or  LwFr 0

24 . By differentiation, we obtain 

wFrwFr  0

2

0 480  , or 

 

r

w
w




2
.                                             (2.3) 

 
This is the ordinary differential equation of a 3D 
membrane that is curved in a 4D space by a 
single central load (symmetric case). Each 
function w(r)=C1+C2 /r is a solution of the ODE 
Eq. (2.3). Differentiation of w(r)= C1+C2/r  yields 
w‘(r)= -C2 /r², the slope of the membrane in 
distance r. The decomposition of the force acting 
on a small mass m inside the sloped membrane 
at distance r from the w-axis yields the downhill 
force FDH as FDH=m AVFH sin(α). In the original 
cosmic membrane model, before the refinement, 
we used only the vector field acceleration AVF 
[23].  Here, AVFH is the horizontal vector field 
acceleration and α is the angle of the slope. 
Considering only small angles (i.e. small gravity), 
one can set sin(α) ~ tan(α) = w‘. Replacing sin(α) 

according to 
2/ rC = tan(α )=w’ by w’(r), one 

obtains 
 
FDH = m AVFH w’(r).                   (2.4) 
 
This is equivalent to Newton's Law of Universal 
Gravitation. In the case of two masses, that is, a 
great central mass which causes the gravitational 
funnel and a small mass m, FDH is the force of 
attraction. Now, we apply Eq. (2.4) to the solar 
system. Here, RS is the radius of the sun, MS its 
mass, WRS the depth w of the deformed 

membrane at the edge of the sun, and W’RS is 
the slope of the membrane at this position. 
Dividing Eq. (2.4) by mass m, one obtains the 
gravitational acceleration gRS at the edge of the 

sun, and finds RSVFRS WAg  . By Newton’s law, 

2/ SSRS RMg  . If the numerical value of 

W’RS were known, one could calculate the value 
of the horizontal vector field acceleration AVFH. 
Supposing, that the depth of space w equals 
zero for r→∞, one can express the function w(r) 
of the gravitational funnel surrounding the sun as 
 

r

RW
rw SRS)( .                                         (2.5) 

 

With 
2/)( rRWrw SRS , one finds 

 

S

RS
RS

R

W
W  .          (2.6) 

 
Now, one has to find a value for the depth of 
space, WRS. We treat Feynman’s radius of 
excess, rEx=a/3=491[m], as formally equivalent to 
the extension dSR of the geometrical path from 
the edge of the sun to its center [24]. Here, the 
magnitude a is the Schwarzschild radius of the 
sun. The radius of excess, rEx, was calculated by 
Feynman for a sphere with constant density, but 
one can show that the extensions of the 
geometrical path within and outside a sphere of 
constant density are equal. The depth of space, 
w(r), and, therefore, the extension dS of the 
geometrical path outside a sphere depend only 
on the total mass of the sphere, but not on its 
interior density distribution. 
 
The dilation Δdr of a piece dr of the membrane is 

2/)()(1 22 rwdrdrrwdrdr   

 
or     422 2/ rdrRWdr SRS . Now, we calculate the 

extension of the exterior geometrical path, dS, by 
solving the integral (2.7). 
 

S

RS

RS

SRS

RS R

W
dr

r

RW
drrwdS

62
)(

2

1 2

4

22
2  


    (2.7) 

 
With Feynman's value of rEX = dS = 491 [m] and 
RS =6.958×10

8
 [m], one obtains a value of WRS = 

1.432×10
6
 [m] or 1432 [km] for the depth of 

space at the edge of sun in our cosmic 

membrane model. By RSVFHRS WAg    and 
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Fig. 3. Depth of space at the edge of sun 

 
Eq. (2.6), the horizontal vector field acceleration 
AVFH is 
 

RS

SRS

RS

RS
VFH

W

Rg

W

g
A 


 .                               (2.8) 

 

With the gravitational acceleration 
2/ SSRS RMg  = 273.65 [m/s

2
] at the edge of 

the sun and the above given values of RS and 
WRS, one obtains an amount of AVFH = 1.330×10

5
 

[m/s
2
] for the horizontal vector field acceleration. 

 

The membrane holds the sun. The vertical action 
of the vector field is compensated for by the 
tension F0 of the membrane. This implies that the 
force F = MS AVFV  with the vertical vector field 
acceleration AVFV must be compensated for by 
the vertical (in w-direction) components of the 
tension F0 that draws at the surface 4πRS

2
 of the 

sun. The vertical component of the sloped 
tension F0 is F0w = F0 sin(α). The slope of the 
membrane is w’=tan(α). For small angles α, one 
obtains for the edge of the sun the equation 

RSoSVFVS WFRAM  24 . With Eq. (2.6) and Eq. 

(2.8), one obtains the relation between the 
tension F0 of the membrane and the vertical 
vector field acceleration AVFV as 
 

RSS

VFVS

WR

AM
F

4
0  .                   (2.9) 

 

The numerical values of both constants are 
derived in the next section. 
 

3. GRAVITATIONAL ENERGY OF THE 
SUN 

 

Gravitational energy, Eg, is the energy that is 
released, when many small masses, coming 

from infinity, agglomerate in a great mass M. In 
1939, Chandrasekhar [25] has estimated the 
energy Eg for the case of a sphere with constant 
density, radius R and mass M. His estimation is 
 

R

M
E Chg

5

3 2

,


 .                   (3.1) 

 
Chandrasekhar’s starting point is the integral 
 





















 3

44 3

0

2

,
S

RS
S

Chg

r

r

drr
E


.(3.2) 

 
The first bracket of the integrand mainly is the 
mass of the added spherical shell. The second 
bracket is the mass of the already agglomerated 
central sphere. Both brackets together give the 
potential of the added spherical shell in the 
gravitational field of the already agglomerated 
central sphere. Here, γ is the gravitational 
constant. By backward substitution of 

SSS MR 3/4 3   in the solution of the 

integral, one obtains Chandrasekhar’s formula. 
 

S

S

RS

S
Chg

R

Mr
E

5

3

35

4 2

0

2522

,


 










 .     (3.3) 

 
The sun is no exact sphere, and its density is not 
a constant. However, we work here with 
Chandrasekhar's assumptions for the sake of 
simplicity. Substituting the sun data into 
Chandrasekhar's equation, we obtain the value 
Eg,Ch = 2.268×10

41
  [J].  

 
Assuming a membrane with tension F0, the 
energy Eg,M, which is released when the sun 
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sinks into the gravitational funnel to a depth of 
space WRS, is given by the integral Eq. (3.4) 
 

dwRwWFE S

Wrs

Mg

2

0
0, 4)(   .      (3.4) 

 
Here, 4π RS

2
F0 W’(w) is the w-direction force 

component of the tension force that supports the 
sun's weight. It is multiplied by the distance dw, 
thus resulting in an energy. With W’(w) = w/RS, 
the solution of the integral (3.4) is 

2/4 2

0, RSSMg WRFE  . However, we examine 

Fig. 4. 
 

Fig. 4 shows the projection of the 4-dimensional 
gravitational funnel onto a plane. Moreover, the 
scaling of the w-axis is extremely exaggerated, 
because the actual ratio of WRS /RS is about 
1/500. The abscissa, here placed in the 
numerator, gives the distance r from the center of 
the sun in units of radii (RS) of the sun. The 
ordinate gives the depth of space w in units of 
WRS. The dashed red line shows a sun that 
closes the funnel down like a flat lid at the depth 
WRS of space. This does, physically, make no 
sense. The pink line draws the more likely funnel 
shape. The interior of the sun sinks deeper than 
the rim in the distance RS from the center of sun, 
because the sun has, in the center, its greatest 
substantial extension. Assuming a constant 
density ρS of the sun, the course w(r) of the 
depth of space inside the sun can be computed 
iteratively by way of the following system of 
difference equations: 
 

drrr

dwww

drwdw

ii

iii

ii











1

1

.                                   (3.5) 

 

Here, dr is an arbitrarily chosen small quantity 
(e.g., 1/1000-th of RS). The quantity 

)4(/)( 2

0 iVFVii rFAMw   is the slope of the 

membrane at the distance ri from the center, and 

the quantity 
34 iSi rM   is the mass of the 

remaining central sphere with radius ri. The 
radius r runs backwards from the starting value 
r0=RS until r=dr ( r = 0 is impossible). The depth 
w of space starts at w0=WRS. The increase in 

energy is, in each step,  iiii dwrwFdE 2

0 4 , 

and, thus, the additional gravitational                      
energy Eg,add  the sum of all increases, i. e., 
Eg,add=ΣdEi . 
 
However, because the numerical values of the 
two constants, F0 and AVFV, are not known yet, 
we have to perform the numerical solution of the 
system (3.5) of difference equations with the aim 
Eg,M+Eg,add=Eg,Ch=2.268×10

41
  [J]  under the 

additional condition of Eq. (2.9). With the thus 
found values of F0=1.820×10

19
  [N/m

2
] and 

AVFV=1.148×10
5
  [m/s

2
], the numerical solution of 

the system (3.5) of difference equations provides 
the gravitational energy Eg,M=1.631×10

41
  [J] and 

the additional energy Eg,add=0.637×10
41

  [J]. This 
results in the total value Eg=2.268×10

41
  [J] for 

the gravitational energy of the sun, that is, the 
value given by Chandrasekhar. 
 
The advantage of the system (3.5) of difference 
equations is that one can use, in a simple way, 
any non-linear, even discontinuous, density 
curve ρ(r) inside the sphere considered. In this 
case, the programmed algorithm is only slightly 
more complex. We, therefore, show the results of 
a parabolic density curve here for comparison. 

Factor      5/13/14/ 3  SSS RMm   

ensures that, when integrating the masses of the 
spherical shells negatively, starting with the full 
sphere of mass MS, at the end, we reach mass           
0.  

 

 
 

Fig. 4. Shape of the gravitational funnel 
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Fig. 5. Shapes of the depth of space for various density distributions 
 
The only needed change in the DE-system (3.5) 
is that we use instead of equation 

34 iSi rM 
 the additional difference 

equation 
drrMM iiii 1

2

11 4   
 with the 

starting value M0=MS. Naturally, we must 
calculate the density values ρi in agreement with 
the chosen density model. Fig. 5 shows the 
computed courses of the depth of space for the 
two cases: (1) constant density; (2) parabolic 
density curve. 
 
The pink curve shows the course of w(r) in the 
case of the constant density distribution inside 
the sun, the blue curve for the parabolic density 
distribution with its maximum at the center of 
sun. The center of the sun sinks correspondingly 
to the greater mass in the center deeper into the 
membrane, i.e., until 1.87 WRS instead of 1.5 
WRS, in the case of constant density. 
Correspondingly, the value of the gravitational 
energy Eg=2.268×10

41
 [J] increases now to 

Eg=3.013×10
41

 [J]. As a matter of course, a 
parabolic density curve, like the constant density 
curve, is also only a model assumption. 
 

4. INERTIAL MASS 
 
The inertial mass of a particle or a body could, in 
our cosmic membrane model, be connected with 
the mass of the membrane. If a body, e.g., the 
sun, moves with speed v in the space (here, e.g., 
in direction x), the gravitational funnel moves as 
well. In the direction of this movement, the 
membrane sinks downwards (in the direction of 
the negative w-axis, see the red arrows). Behind 
the moved body, the membrane is lifted in the 
direction of the positive w-axis (green arrows, 
see Fig. 6). 

                                                  W 
       
 
 
                                         VM            VM 
                       W(t0)                                        W(t1) 
 
 
 
 

x 

v 
 

 
Fig. 6. Moved body with moved gravitational 

funnel 
 
In this up-and-down movement, kinetic energy is 
stored. If a body is accelerated, decelerated, or 
deviated from its direction, then this also implies 
an intervention in the movement of the 
membrane. Accelerating the body must also 
accelerate the up-and-down movement of the 
diaphragm. 
 
In the case of a spherical body, e.g., the sun, the 
depth w of space outside the body is [26] 
 

rRWrw SRS /)(   (4.1) 

 
However, Eq. (4.1) holds only in the case of 
weak gravitation, e.g., in the case of the sun. 
Quantity w is the depth of space in the fourth 
dimension, WRS is the depth of space at the edge 
of the sun, and  RS is the radius of the sun. The 
origin of the coordinate system x, y, z is the 
center of the sun at time t0. If the sun moves with 
speed v in direction of the positive x-axis, then 
the gravitational funnel is commoving. For small 
velocities, i. e., v<<c, we neglect the finite 
propagation velocity c of gravitation. If we hold a 

point in space, r


= (x, y, z), then the gravitational 
funnel deepens for positive x-values, i.e., we 

have a negative speed of the membrane, -vW( r


), in the fourth dimension at position r


. In the 
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case of negative x-values, the sign of the speed 

vW( r


) changes. Assuming density ρM [kg/m
3
] for 

the membrane, we can calculate the kinetic 
energy EM,kin of the movement of the membrane 

in the fourth dimension. With 
222 zyxr 

, v=dx/dt, and dttrdwtrvW /))(())((


 , the 

speed vW( r


) of the membrane is 
 

v
r

x

r

RW

dt

dx

dx

dr

dr

dw
rv SRS

W 2
)( 


.       (4.2) 

 
Then, the kinetic energy is the volume integral 

 dVrvE WMkinM )()2/( 2

,


  over the entire 

space of the gravity funnel. Hereby, for this part 
of the calculation, however, we recess the 
volume of the sun itself, since 1) the course of 
the membrane deflection is unknown there 
because of the unknown density course inside 
the sun, and 2) the integrand in its form above 
would be singular because of r→0. In addition, 
we neglect a possible density change of the 
membrane in the gravitational funnel. For the 

spherical coordinates r, φ,  , we obtain 

 




dddrr
r

xvRW
E SRSM

kinM )cos(
2

2

6

2222

,  (4.3) 

 
Here, the radius r runs from RS to ∞, the angle φ 

runs from 0 to 2π, and the angle   runs from – 

π/2 to π/2.  With )sin()cos( rx   , 

  drr )/1( 2
= 1/RS,   d)(cos2

= π, and 

  d)cos()(sin2
= 2/3, the kinetic energy of 

the membrane is 
 

3

22

,

vRW
E SRSM

kinM


 .                    (4.4) 

 

However, the recessed volume of the moving 
sun contributes significantly to the kinetic energy, 
because there the deviation of the membrane 
has its maximum. The course of the density, 

)(rS ,  inside the sun is not known exactly. 

Therefore, we work with a density model. We 
postulate tentatively 
 

  k

SSS Rrmr /1)(  .                    (4.5) 

 

In the case of k=2, the density course )(rS  

would be a parabola with its maximum in the 

center of the sun. For the reason of simple 
integrability, we deliberately did not choose a 
density curve that is based on temperature 
curves or nuclear processes. The factor mS is 
calculated only once. It ensures that the volume 
integral of the density over the volume of the sun 
fits their mass MS for each value of parameter k. 

With Integral mS=MS/     dVRr
k

S/1 , we 

obtain       3/13/14/ 3  kRMm SSS  . 

Fig. 7 shows the course of density, )(rS , over 

the diameter of the sun for different values of the 
parameter k. For k→∞, factor mS fits the constant 

density, i.e., the arithmetic mean value, S

=1407 [kg/m3], of the density of the sun. 
 

 
 

Fig. 7. Courses of density ρ in 1000 kg/m
3
 for 

various values of k 
 
In the case of a sphere with radius r and mass M, 
one obtains by Eq. (2.8) the slope 

VFHAgrw /)(   of the membrane at the edge of 

the sphere. Hereby, g is the gravitational 

acceleration, 
2/ rMg  , at the edge of the 

sphere, and AVFH is the horizontal vector field 
acceleration, and γ is the gravitational constant. 
We replace in Eq. (3.2) the derivation w’(r)=dw/dr 

by  VFHArrMrw 2/)()(  , and obtain, for 

the vertical speed )(rvW


 of the membrane, at 

the surface of the sphere with radius r 
 

v
r

x

Ar

rM
rv

VF

W 2

)(
)(





.                  (4.6) 

 
M(r) is here the mass of the sphere until the 

radius r, i.e.,     dVRrmrM
k

SS /1)( , 

or       3/3/4)( 33   kRrrmrM k

S

k

S . 
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Now, one obtains, instead of  Eq. (4.3), the 
kinetic energy of the moved membrane inside the 
sun as 
 




dddrr
r

xrM

A

v
E

VEH

M
kinM )cos(

)(

2

2

6

22

2

22

int,,  .(4.7) 

 
Because of the relation 

      226266222 3/33/29/16)(   kRrkRrrmrM k

S

kk

S

k

S , 

one can subdivide integral (4.7) into three parts. 
In the case of the sun, r runs from 0 to RS, angle 

φ from 0 to 2π, and angle   from – π/2 to π/2. 

With )sin()cos( rx  ,   d)(cos2
= π, 

and   d)cos()(sin2
= 2/3 (as above), one 

obtains the solution 
 
















20int,,
)3)(52(

1

)3)(5(3

2

45

1

kkkk
EE kinM

   (4.8) 

 
With 
 

2

52223

0
3

16

VFH

SMS

A

Rvm
E


 .                   (4.9) 

 
Eq. (4.8) shows that the kinetic energy of the 
membrane depends only on the square v

2
 of the 

speed v of the sun in our three spatial 
dimensions. This is the same behavior as that of 
the moved sun. 
 
We seek an estimation of the density ρM of the 
membrane. The cosmic membrane is a flat 
object under tension. Therefore, transversal 
waves, e.g., gravitational waves, can occur. We 
use the relation Eq. (4.10), following from the 
wave equation, e.g., given for a taut guitar string 
[27], 
 
v

2
=F0 /ρ.                                            (4.10) 

 
Here, F0 is the tension, ρ the mass distribution, 
and v the speed of the wave. The membrane is 
presumably very thin in the fourth dimension. 
Therefore, ρ is not a density, but a mass 
distribution ρsurf , i.e., the mass of one cubic 
meter of the tree-dimensional surface of the 
balloon, which is our cosmos. However, the 
dimension is that of a common density. With a 
taut guitar string, the difference becomes more 
apparent: The density of steel is about 8000 
Kg/m

3
, but the density distribution of the guitar 

string is only about 0.01 Kg/m.). By solving the 

formula v
2
=F0 /ρsurf  with v=c , we obtain ρsurf = F0 

/c
2
 = 2.025×10

2
 [Kg/m

3
]. 

 
Inserting the mass distribution ρsurf  into Eqs. 
(4.4) and (4.9) instead of the density ρM of the 
membrane, one obtains for the total amount of 
the kinetic energy, EM,kin, of the moved 
membrane inside and outside the sun for speed 
v=1 [m/s] and density parameter k=2, the value 
of EM,kin = 4.26×10

23
 [J]. Unfortunately, this 

amount is only a small fraction of the true kinetic 
energy of ES,kin=(MS /2)v

2 
=0.997×10

30
 [J] of the 

sun for speed v=1 [m/s]. 
 
The trial, to use another relation for the 
longitudinal gravitational waves in the 
membrane, has had no success. We suppose 
that longitudinal waves can occur, but, because 
of the extreme thinness of the membrane 
compared with its cosmic extension, they have 
no relevance for the transport of energy. 
 

5. THE CLAY LUMP MODEL OF THE 
RELATIVISTIC INCREASE OF MASS  

 
Mass increases with the speed in the absolute 
space. This applies equally to the inert and 
heavy masses. Since mass and energy are 
equivalent to each other, a particle with higher 
velocity (and therefore with higher mass) 
produces more electron-positron pairs, than a 
particle with lower speed. In our membrane 
theory, a particle has its rest mass m, when it is 
resting in the absolute space. Energy 

22 )/(1/ cvmcE  is a conservation 

quantity, where m and v are to be taken in the 
dimensions of the rest frame. The Lorentz factor, 
above used, is an implication of the addition 
theorem of velocities of the special relativity 
(SR). It describes the behavior of the mass of a 
particle under acceleration. Here, however, we 
try to find another foundation of the factor, 
because the addition theorem of velocities of the 
SR does not hold in the same way under the 
paradigm of the absolute space assumed by us 
with a relativistic length and cross contraction 
[28].  
 
In this section, we present a model of the 
increase of mass by repeated impact processes. 
A particle with rest mass mp is in rest in the 
membrane, i.e., its speed is v = 0. The particle is 
bombarded with photons of mass 

2/chdmPh  . We suppose that the impact is 

inelastic, i.e., after impact, the photon transfers 
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its whole energy to the particle, and, at the same 
time, the mass of the particle increases just as 
an object increases in mass when sticky clay is 
thrown at it. 
 
A mass m in motion with speed v has, in the 
case of low speed v (small compared with the 
speed of light, c), the kinetic energy 
 

20

2
v

m
Ekin  .                                 (5.1) 

 
Quantity m0 is the rest mass. We find the same 
amount of energy hidden in the relativistic 
increase dm of mass. The relativistic increase of 
mass is not only a theoretical assumption of the 
SR, but also an experimentally very exactly 
measured effect [29, 30]. The relativistic increase 
of mass is 
 

022

0

/1
m

cv

m
dm 


 .                    (5.2) 

 
By the serial development of the square root, one 
obtains, in the cases of low speeds v, 
 

2

2

0

2 c

vm
dm  .                                 (5.3) 

 
From this, we deduce that the energy 

2cdmdmPh   bears on the increase of the 

kinetic energy of the particle under consideration 

as an increase of mass, both in equal parts. If we 
put this thought into equations, we obtain for the 
energy Eq. (5.4), i.e., 
 

222

222
v

dmm
c

dm
v

m PhPh 






 
 ,       (5.4) 

 
Or 
 

Ph

Ph

dmm

cdmmv
v




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22
2

.                     (5.5) 

 
Neglecting the small quantity (dv)

2
 , we obtain 

from    2222 2 dvdvvvdvvv   and 

Eq. (5.5) the Eq. (5.6). 
 





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







 2

22

2

1
v

dmm

cdmmv

v
dv

Ph

Ph .      (5.6) 

 
Now, we have two coupled integrable difference 
equations: 
 

)2/(1 Phnn dmmm   ,                   (5.7) 

 

dvvv nn 1 .                                 (5.8) 

 

With the initial values, v0 =0  and m0 = 1, and the 
arbitrarily chosen increment dmPH = 0.00001, one 
obtains, by numerical integration, the results in 
Table 1. 

 
Table 1. Results of integration of the DE-system Eqs. (5.7) and (5.8) 

 

step m(v) v [m/s] dv [m/s] v’ [m/s] mrel(v) 

0 1 0 948,022 948,022 1 
1 1.000005 948,022 392,678 1,340,700 1.000005 
2 1.000010 1,340,700 301,309 1,642,010 1.000010 
10 1.000050 2,997,808 146,307 3,144,116 1.000050 
100 1.000500 9,476,704 47,230 9,523,934 1.000500 
1000 1.005000 29,867,322 14,818 29,882,140 1.005000 
10000 1.050000 91,409,814 4,246 91,414,061 1.050000 
20000 1.100000 124,892,739 2,703 124,895,442 1.100000 
30000 1.150000 148,042,796 1,995 148,044,792 1.150000 
40000 1.199840 165,666,123 1,570 165,667,693 1.199840 
50000 1.249840 179,834,369 1,279 179,835,649 1.249839 
60000 1.299840 191,524,367 1,068 191,525,435 1.299839 
70000 1.349840 201,368,689 907 201,369,596 1.349839 
80000 1.399840 209,785,873 780 209,786,654 1.399839 
90000 1.449840 217,069,203 679 217,069,882 1.449839 
100000 1.499840 223,432,882 596 223,433,478 1.499839 
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Column step contains the step number of the 
numerical integration. Column mrel(v) contains 

the prediction 
22

0 /1/)( cvmvmrel  of the 

mass accordingly to Einstein’s SR. Column m(v) 
contains the calculated mass values of the clay 
lump model. The differences between the values 
of m(v) and mrel(v) are about 2×10

-6
. They are 

caused mostly by the error of the numerical 
integration which depends on the finite dmPH –
value of dmPH = 0.00001. Here, the last value of 
the particle speed, v=223,432,882 [m/s], is quite 
close to the speed of light of c=299,792,456 
[m/s]. 
 

6. RESULTS AND DISCUSSION 
 
The assumption of Newton’s absolute space 
together with the model of a brane world leads to 
minor changes in the existing worldview. Peter 
Higgs introduced the Higgs field, and Lisa 
Randall and Raman Sundrum a world-spanning 
brane with the property that the influence of 
gravitons drops exponentially with the distance 
from the membrane of the position of their 
production. We have taken up these important 
suggestions and improved the cosmic membrane 
model that we proposed in 1994. 
 
In Section 2, we identify the vector field, used by 
us from the beginning, with the Higgs field. The 
Higgs field is the cause of the mass of waves 
and particles. Furthermore, we assume, conform 
with Randall and Sundrum, a wafting layer 
directly before the membrane. The membrane 
has a strength and toughness which is much 
greater as that of steel. All physical processes do 
not take place in the membrane, but in the 
wafting layer. The density of the wafting layer 
drops exponentially with the distance from the 
membrane, in accordance with the decrease of 
atmospheric pressure with increasing altitude. 
 
The membrane was always assumed by us to be 
permeable for the vector field. But disturbances 
in the wafting layer as caused by waves or 
particles increase the resistance of the 
membrane in the flow of the vector field. This 
causes an additional load and, consequently, a 
curvature of the membrane. In the case of 
spherical masses, we obtain gravitational funnels 
of spherical symmetry which one can treat 
mathematically in particularly simple ways. So, 
one can calculate, from the sun data, the depth 
of the space at the edge of the sun, and, from 
this, the differential equation of the curvature of 
the membrane in the gravitational funnel. 

However, in all cases of non-spherical masses, 
the computation of the curvature of the space 
needs the solution of partial differential equations 
in 4 dimensions [26]. 
 
In Section 3, we deal with the gravitational 
energy in the classical perspective given by 
Chandrasekhar and in the perspective of the 
cosmic membrane model. By use of the cosmic 
membrane model, we obtain Chandrasekhar’s 
value of the gravitational energy using the value 
F0=1.820×10

19
 [N/m

2
] for the membrane tension 

and the value AVFV=1.148×10
5
  [m/s

2
] for the 

vertical vector field acceleration. 
 
The equivalence of heavy and inert mass is an 
experimentally well-based finding, and one of the 
foundations of Einstein’s GR. In Section 4, we 
tried to explain the inert mass with the up and 
down motion of the curved membrane, and we 
were able to achieve a partial success. We were 
able to prove that the kinetic energy of the up 
and down motion of the membrane during the 
migration of the gravitational funnel behaves 
formally as the kinetic energy of a moved mass, 
i.e., it is proportional to the square of the speed, 
v

2
. Numerically, however, the value is too small. 

The origin of the equivalence of the heavy and 
inert mass is, therefore, not yet clear. However, 
we suspect that the main flow of the vector field 
permeates the membrane, but, in the case of a 
sloped membrane, a side stream forms parallel 
to the membrane in direction of the greatest 
inclination. So, both phenomena - warping of 
space due to a heavy mass and acceleration of a 
mass in a gravitational field  - have nearly 
identical causes. 
 
In Section 5, we present the clay lump model of 
the relativistic increase of mass. It describes the 
increase in mass of a particle that is accelerated 
by repeated impact processes in good 
agreement with the SR and the experimental 
findings [29, 30]. We have established our 
assumption that the energy of the pushing 
photon, or its mass equivalent dm, respectively, 

i.e., 
2cdmdmPh  , affects, in equal parts, the 

increase of the kinetic energy and the increase of 
the mass of the particle. With this assumption, 
the integration of the equation of motion 
succeeds. The clay lump model suggests the 
increase in energy of an accelerated particle, and 
that the increase in mass and energy is real. In 
the case of an impact, this mass and energy is 
released in the form of electron-positron pairs or 
photons. Unfortunately, the clay lump model is 
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only one step in the attempt to explain the 
relativistic increase of mass from the view of the 
membrane. There is no direct connection to the 
cosmic membrane model. After all, the calculated 
values of the clay lump model are invariant to 
any constant expansion rate VE of the membrane 
in the fourth spatial dimension, because we have 
used the energy equation (5.4). Replacing v

2
 by  

v
2
+ VE

 2
 , v’

2
 by  v’

2
+ VE

 2
, and c

2
 by  c

2
+ VE

 2
 , 

one obtains, in Eq. (5.5), in each side of the 
equation only the additive terms + VE

 2
 , which 

cancel each other out. In this respect, the clay 
lump model is 4D-suitable in our cosmic 
membrane model.  
 

7. CONCLUSIONS 
 
We know that gravity in the context of a taut 
elastically membrane is a wide field. One can 
exactly solve the simple cases, as that of a single 
load. However, already in the case of two heavy 
masses, the equations become involved. The 
more masses, the more effort is needed. Based 
on our experience in computing the force of 
attraction in a many-particle system, we know the 
importance of efficient software. The difficulty is 
that all solutions are found only iteratively, and, 
for the iterations, one needs a criterion to stop 
the iteration. Another serious problem is that the 
quantity of improvement of the solution 
decreases with each step of the iteration. Here, 
we have to find a way to come out of this vicious 
circle.  
 
In this paper, we have shown that the kinetic 
energy of the up and down motion of the 
membrane during the migration of the 
gravitational funnel behaves as the kinetic 
energy of a moved mass. However, numerically, 
the value found is too small. Now, our aim is to 
find another approach to the explanation of the 
equivalence of the heavy and inert masses from 
the perspective of the membrane theory. 
 
The clay lump model gives an explanation of the 
relativistic increase of mass of a particle under 
acceleration. In a next step, we should consider 
the issue in the context of the membrane theory, 
specifically under the paradigm of Newton’s 
absolute space. 
 

8. SUMMARY 
 
Newton’s absolute space is one of the 
foundations of the Cosmic Membrane theory 
(CM). Membrane and absolute space are 
synonyms. We had introduced the homogeneous 

vector field that acts on the membrane as source 
of the heavy mass, from the beginning in 1994. 
Now, we identify it with the Higgs-field. In 1999, 
Randall and Sundrum introduced their model of a 
world-spanning brane. With this idea, we improve 
our cosmic brane model by the introduction of 
the wafting layer outside the membrane. This 
layer solves the issue of the mobility of particles 
in a superstrong and superhard membrane. 
 
Feynman’s radius of excess is our starting point 
to explore the curvature of the membrane near 
heavy masses. Using its value of rEx=a/3=491[m] 
(with Schwarzschild’s radius a), we obtain, for 
the gravitational funnel of sun, a depth of space 
of WRS = 1.432×10

6
 [m] at the edge of sun. 

 
In 1939, Chandrasekhar calculated the 
gravitational energy of stars. We followed his 
tracks and obtained, in the case of sun, the same 
value. As a side result, we obtained the value of 
the tension F0 of the cosmic membrane as 
F0=1.820×10

19
 [N/m

2
], and that of the vertical 

vector field acceleration AVFV, acting 
perpendicularly from the fourth spatial dimension 
on the membrane, as AVFV=1.148×10

5
 [m/s

2
]. 

The horizontal vector field acceleration AVFH, i.e., 
inside the wafting layer, is connected with the 
acceleration of a probe mass in the gravitational 
field of a heavy mass, e.g., the sun or the earth. 
Its value is AVFH=1.330×10

5
 [m/s

2
]. AVFH acts as 

acceleration a=AVFH w’, where w’ is the slope of 
the membrane. 
 
The mass of the moved membrane in a 
propagating gravitational funnel behaves as an 
inert mass. Its kinetic energy follows the relation 
Ekin~mv

2
. However, the energy of the moving 

membrane yields a numerical value that is too 
small to explain the equivalence of heavy and 
inert mass. 
 
Gravitational waves in connection with the 
membrane can appear in two kinds of waves, 
longitudinal and transversal. Assuming speed of 
light c for the speed of transversal gravitational 
waves, we obtain first estimations of the mass 
distribution ρsurf of the membrane.  
 
The clay lump model describes the increase in 
mass of a particle that is accelerated by repeated 
impact processes.  The energy of the pushing 
photons affects, in equal parts, the increase in 
kinetic energy and the increase in the mass of 
the particle. The integration of the equation of 
motion yields results that are exactly the same as 
Einstein’s prediction in his SR. The model 
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suggests the increase in energy in an 
accelerated particle, and it is invariant to any 
constant expansion rate VE of the membrane in 
the fourth spatial dimension. 
 

COMPETING INTERESTS 
 
Authors have declared that no competing 
interests exist. 
 

REFERENCES 
 
1. Hubble E. A relation between distance and 

radial velocity among extra-galactic 
nebulae. Proc. Nat. Acad. Sc. 1929;15 
(3):168–173. 
DOI:10.1073/pnas.15.3.168. 

2. Penzias AA, Wilson RW. A measurement 
of excess antenna temperature at 4080 
Mc/s. ApJ. 1965;142:419-421.    
DOI:http://dx.doi.org/10.1086/148307 

3. Güven R. Supermembranes on black 
holes, Phys. Lett. B 1988;212:277-282. 
DOI:https://doi.org/10.1016/0370-
2693(88)91317-2 

4. Horowitz GT, Strominger A. Black strings 
and p-branes. Nucl. Phys. B 
1991;360;197–209, DOI:10.1016/0550-
3213(91)90440-9.  

5. Polchinski J. Dirichlet Branes and 
Ramond-Ramond Charges. Phys. Rev. 
Lett. 1995;75 (26):4724–4727.  arxiv:hep-
th/9510017 

6. Mukherjee M. Involutive Spacetime 
Distributions and p-Brane Dynamics, 1997, 
arXiv:physics/9707013v1 [math-ph] 

7. vonWeber S, vonEye A. Two-way and one-
way vacuum speed of light under the 
membrane paradigm. PSIJ. 2017;15(2):1-
17. 
Available:https://journalpsij.com/index.php/
PSIJ/article/view/24376/45569 

8. Higgs PW. Broken symmetries and the 
masses of gauge bosons. Phys. Rev. Lett. 
1964;13:508. 
Available:https://journals.aps.org/prl/pdf/10
.1103/PhysRevLett.13.508 

9. Englert F, Brout R. Broken symmetry and 
the mass of gauge vector mesons, Phys. 
Rev. Lett. 1964;13:321. 
Available:https://journals.aps.org/prl/pdf/10
.1103/PhysRevLett.13.321 

10. Guralnik GS, Hagen CR, Kibble TWB. 
Global conservation laws and massless 
particles,. Phys. Rev. Lett. 1964;13:585. 
Available:https://journals.aps.org/prl/pdf/10
.1103/PhysRevLett.13.585 

11. Weinberg S. A model of leptons. Phys. 
Rev. Lett. 1967;19:1264–1266. 
DOI:https://doi.org/10.1103/PhysRevLett.1
9.1264 

12. Savvidy GK. Infrared instability of the 
vacuum state of gauge theories and 
asymptotic freedom. Phys. Lett. B. 
1977;1(1):133–134.  
DOI:10.1016/0370-2693(77)90759-6. 

13. Olesen P. On the QCD vacuum. Phys. 
Scripta. 1981;23(5B):1000–1004. 
DOI:10.1088/0031-8949/23/5B/018. 

14. Chodos A, Jaffe R, Johnson K, Thorn CB, 
Weisskopf VF. New extended model of 
hadrons. Phys. Rev. D. 1974;9(12):3471–
3495.  
DOI:10.1103/PhysRevD.9.3471.  

15. Vepstas L, Jackson AD. Justifying the 
chiral bag. Phys. Rep. 1990;187(3):109-
143. 
DOI:10.1016/0370-1573(90)90056-8  

16. Hosaka A, Toki H. Chiral bag model for the 
nucleon. Phys. Rep. 1996;277(2–3):65-
188.  
DOI:https://doi.org/10.1016/S0370-
1573(96)00013-0 

17. Davies CTH, et al. High-precision lattice-
QCD confronts experiment. Phys. Rev. 
Lett. 2004;92(2):022001. 
Available:https://journals.aps.org/prl/abstra
ct/10.1103/PhysRevLett.92.022001 

18. Bazavov A, et al. Nonperturbative QCD 
simulations with 2+1 flavors of improved 
staggered quarks. Rev. Mod. Phys. 2010; 
82(2):1349. 
Available:https://journals.aps.org/rmp/abstr
act/10.1103/RevModPhys.82.1349 

19. Petreczky P. Lattice QCD at non-zero 
temperature. J. Phys. G. 2012;39(9): 
093002. 
Available:https://arxiv.org/abs/1203.5320 

20. Randall L, Sundrum R. A large mass 
hierarchy from a small extra dimension. 
Phys. Rev. Lett. 1999;83:3370. 
Available:https://journals.aps.org/prl/abstra
ct/10.1103/PhysRevLett.83.3370 

21. Randall L, Sundrum R. An alternative to 
compactification. Phys. Rev. Lett. 1999; 
83:4690. 
Available:https://journals.aps.org/prl/abstra
ct/10.1103/PhysRevLett.83.4690  

22. Von Weber  S, Von Eye A. Multiple 
weighted regression analysis of the 
curvature of a 3D brane in a 4D bulk space 
under a homogeneous vector field. Inter 
Stat. 2010; July. Please, contact author  
SVW. 

https://de.wikipedia.org/wiki/Digital_Object_Identifier
https://doi.org/10.1073/pnas.15.3.168
http://dx.doi.org/10.1086/148307
https://doi.org/10.1016/0370-2693(88)91317-2
https://doi.org/10.1016/0370-2693(88)91317-2
https://de.wikipedia.org/wiki/Digital_Object_Identifier
https://doi.org/10.1016/0550-3213%2891%2990440-9
https://doi.org/10.1016/0550-3213%2891%2990440-9
https://de.wikipedia.org/wiki/ArXiv
https://arxiv.org/abs/hep-th/9510017
https://arxiv.org/abs/hep-th/9510017
https://arxiv.org/abs/physics/9707013v1
https://journalpsij.com/index.php/PSIJ/article/view/24376/45569
https://journalpsij.com/index.php/PSIJ/article/view/24376/45569
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.13.508
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.13.508
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.13.321
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.13.321
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.13.585
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.13.585
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1103/PhysRevLett.19.1264
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2F0370-2693%2877%2990759-6
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1088%2F0031-8949%2F23%2F5B%2F018
https://en.wikipedia.org/wiki/Viki_Weisskopf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1103%2FPhysRevD.9.3471
https://ui.adsabs.harvard.edu/link_gateway/1990PhR...187..109V/doi:10.1016/0370-1573(90)90056-8
https://doi.org/10.1016/S0370-1573(96)00013-0
https://doi.org/10.1016/S0370-1573(96)00013-0
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.92.022001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.92.022001
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1349
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1349
https://arxiv.org/abs/1203.5320
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.83.3370
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.83.3370
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.83.4690
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.83.4690


 
 
 
 

Weber and Eye; PSIJ, 26(3): 25-38, 2022; Article no.PSIJ.89400 
 

 

 
38 

 

23. Von Weber S, von Eye A. Geodetic 
precession under the paradigm of a cosmic 
membrane. Phys. Sci. Int. J. 2016;10(4):1-
14. 
Available:https://journalpsij.com/index.php/
PSIJ/article/download/24058/44957/ 

24. Feynman/Leighton/Sands. Feynman - 
Vorlesungen über Physik, Oldenbourg 
Verlag; 1987. 

25. Chandrasekhar S. An introduction to the 
study of stellar structure; 1939. 

26. Von Weber S, Von Eye A. Monte Carlo 
study of vector field-induced dark matter in 
a spiral galaxy. InterStat. 2011; August.  
Please, contact author SVW. 

27. Joos G. Theoretical physics. 15th edition. 
AULA-Verlag Wiesbaden; 1989. 

28. Von Weber S, Von Eye A. Dilation of time 
and Newton’s absolute time. PSIJ. 
2019;23:1-20. 
DOI:10.9734/psij/2019/v23i130141  

29. Faragó PS, Jánossy L. Review of the 
experimental evidence for the law of 
variation of the electron mass with velocity. 
Il Nuovo Cimento. 1957;5(6):379–             
383. 
DOI:10.1007/BF02856033, 
S2CID 121179531 

30. Geller K, Kollarits R. Experiment to 
Measure the Increase in Electron Mass 
with Velocity. Am. J. Phys. 1972;40(8): 
1125–1130.  
Available:https://ui.adsabs.harvard.edu/abs
/1972AmJPh..40.1125G/abstract 

_________________________________________________________________________________ 
© 2022 Weber and Eye; This is an Open Access article distributed under the terms of the Creative Commons Attribution 
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original work is properly cited. 

 
 

Peer-review history: 
The peer review history for this paper can be accessed here: 

https://www.sdiarticle5.com/review-history/89400 

https://journalpsij.com/index.php/PSIJ/article/download/24058/44957/
https://journalpsij.com/index.php/PSIJ/article/download/24058/44957/
https://doi.org/10.9734/psij/2019/v23i130141
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2FBF02856033
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:121179531
https://ui.adsabs.harvard.edu/abs/1972AmJPh..40.1125G/abstract
https://ui.adsabs.harvard.edu/abs/1972AmJPh..40.1125G/abstract
http://creativecommons.org/licenses/by/4.0

