
Physical Science International Journal

25(2): 37-57, 2021; Article no.PSIJ.66662
ISSN: 2348-0130

Re-interpretation of the Two-World Background of Special
Relativity as Four-World Background II

O. Akindele Adekugbe Joseph1∗

1Department of Physics, Ondo State University of Science and Technology, Center for the
Fundamental Theory and Unification, Okitipupa, Nigeria.

Authors contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information
DOI: 10.9734/PSIJ/2021/v25i230243

Editor(s):
(1) Prof. Shi-Hai Dong, National Polytechnic Institute, Mexico.

(2) Prof. Abbas Mohammed, Liverpool University, England Blekinge Institute of Technology, Sweden.
Reviewers:

(1) Alfred Yusuf Shaikh, Indira Gandhi Kala Mahavidyalaya, India.
(2) Ghazwan Ghazi Ali, University of Mosul, Iraq.

(3) Ashish Wamanrao Selokar, Mohsinbhai Zaweri Mahavidyalaya, India.
(4) Jamal M. Rzaij, University of Anbar, Iraq.

Complete Peer review History: http://www.sdiarticle4.com/review-history/66662

Received 10 February 2021
Accepted 17 April 2021

Original Research Article Published 08 June 2021

ABSTRACT

Coexisting four universes in separate four-dimensional spacetimes constitute four-world
background for the special theory of relativity (SR) in each universe, as developed in previous
papers. The fact that the four universes exhibit perfect symmetry of state and perfect symmetry of
natural laws is shown in this paper. The many universes concept involved is entitled compartment
universes. Compartment universes are coexisting symmetrical universes in different four-
dimensional spacetimes of identical extents. Material particles and bodies are symmetrically
distributed in spacetimes and the same natural laws take on identical forms in compartment
universes. These features differentiate the compartment universes concept from the multiverse of
inflationary cosmology and the parallel branes of M-theory. The compartment universes concept
opens new vista for many-world interpretations of the natural laws, as demonstrated for the special
theory of relativity already, and it is a potential platform for the uniform formulation of the natural
laws. Investigation of the possible existence of larger number of compartment universes than four
and many-world interpretations of gravitation and other natural laws in the compartment universes
picture are recommended.

Keywords: Two-world picture; four-world picture; four symmetrical universes; symmetry of state;
symmetry of natural laws; compartment universes.
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1 INTRODUCTION

The two-world background of the special theory
of relativity (SR), demonstrated by reformulating
the theory on a two-world background in two
papers [1, 2], is re-interpreted as four-world
background in the first part of this paper [3], in
which it is concluded that SR definitely rests
on a four-world background. The new affine
spacetime/intrinsic affine spacetime geometrical
representations of Lorentz transformation (LT)
and intrinsic Lorentz transformation (∅LT) and
their inverses, comprising of four diagrams,
developed in the two-world picture in [1], is shown
to be rooted in the four-world picture in [3]. Two
issues about the new geometry that cannot be
explained within the two-world picture in [1]
are explained in the four-world picture in
[3].

What is left to be done in order to describe the
coexisting four universes in separate spacetimes
of the four-world picture as symmetrical
universes, as remarked under the Conclusion
of [3], is the demonstration of perfect symmetry
of state and perfect symmetry of natural laws
among the four universes. This is the purpose
of this this paper. The previous three papers
[1, 2, 3] and this fourth paper are meant to
be read sequentially in the order in which they
have been written. An initial less developed
form of this paper has appeared as part of [4].
The unpublished initial states of a part of this
paper and other unpublished papers on effort
to subsume the theory of gravitation into the
four-world picture had also been lodged with the
viXra electronic archive (https://vixra.org) in 2010
through 2012.1

Extensive discussion of the various conceptions
of many worlds (or universes) in physics in the
more recent time, to which the compartment
universes concept of the previous papers [1, 2, 3]
and this paper is a new addition, have been
done under the Introduction of [1]. They are the
multiverse of inflationary cosmology (Linde and
Vachurin [5]; Buosso and Susskind [6]; Aguirre

and Tegmark [7]) and the brane worlds of M-
theory (Maartens and Koyamme [8]), (Brax and
Bruck [9]).

A distinguishing feature of the multiverse of
inflationary cosmology and the compartment
universes concept of the present papers is
that, the multiverse is an assemblage of
innumerable exponentially large disconnected
regions of the universe (or spacetime), which
accommodate different natural laws [10],
whereas the symmetrical universes of the
compartment universes concept exist in different
four-dimensional spacetimes of identical extents
and accommodate the same natural laws.
The brane worlds of M-theory are likewise
different from the compartment universes of
the present papers, because they (the branes)
can have different number of dimensions of
different extents and accommodate different
natural laws.

2 VALIDATING PERFECT
SYMMETRY OF STATE
AMONG THE FOUR
UNIVERSES ISOLATED

Perfect symmetry of state will exist among the
four universes if, apart from their different signs,
the masses of the four members of every quartet
of symmetry-partner particles and bodies in
the four universes have identical magnitudes,
identical shapes and identical sizes, and if
they perform identical (or symmetrical) relative
motions in their respective universes at all
times. Identical magnitudes, identical shapes
and identical sizes of masses of the members
of every quartet of symmetry-partner bodies will
guarantee symmetry of gravitational fields in the
four universes. These conditions shall be shown
to be met, leading to the conclusion of perfect
symmetry of state among the four universes in
this section.

1My name appears in its former form: A. O. J. Adekugbe and Akindele J. Adekugbe, as
author’s name, on the papers in the archive (https://vixra.org/abs/1002.0034; 1011.0011; 1101.0020;
1101.0021, etc.).
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2.1 Identical Magnitudes of
Masses and Intrinsic
Masses of the Members
of every Quartet of
Symmetry-partner Particles
and Bodies in the Four
Universes

Although the equality of the rest mass m0

of a particle in the proper Euclidean 3-space
Σ′ of our universe and the rest mass m0

0

of the symmetry-partner particle in the proper
Euclidean 3-space Σ0′ of the positive time-
universe has been inferred in the third paragraph
to the end of sub-section 2.1 of [3], this shall
be done generally for the members of every
quartet of symmetry-partner particles and bodies
in the four universes in this sub-section. As
illustrated in Fig. 12a of [3], reproduced as
Fig. 1a of this paper, the one-dimensional intrinsic
rest mass (or classical nomass) ∅m0 in the
one-dimensional isotropic proper (or classical)

intrinsic space (or proper nospace) ∅ρ′, lies
directly underneath (or is embedded in) the
three-dimensional rest mass m0 in the proper
Euclidean 3-space Σ ′ of the positive (or our)
universe, with respect to 3-observers in Σ ′.
Likewise the one-dimensional intrinsic rest mass
∅m0

0 in the one-dimensional isotropic proper
intrinsic space ∅ρ0′, lies directly underneath
(or is embedded in) the three-dimensional rest
mass m0

0 in the proper Euclidean 3-space Σ0′

of the positive time-universe, with respect to 3-
observers0 in Σ0′ in Fig. 12b of [3], reproduced
as Fig. 1b of this paper.

As uniformly done in the previous papers [1,
2, 3] and as shall be done in this paper,
the terms, “three-dimensional mass”, “one-
dimensional mass”, “four-dimensional mass” and
“one-dimensional intrinsic mass”, are used to
mean mass in three-dimensional space, mass
in time-dimension, mass in four-dimensional
spacetime and intrinsic mass in one-dimensional
intrinsic space respectively.
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Fig. 1. Flat two-dimensional proper intrinsic metric spacetime containing two-dimensional
intrinsic rest mass of a particle or object embedded in (or ‘underlying’) the flat

four-dimensional proper metric spacetime containing the four-dimensional rest mass of the
particle or object (a) in our universe and the negative universe and (b) in the positive

time-universe and the negative time-universe (Figs. 12a and 12b of [3])

Now the fact that the three-dimensional rest mass m0 is the outward (or physical) manifestation, in
the proper physical Euclidean 3-space Σ′, of the one-dimensional intrinsic rest mass ∅m0 in the one-
dimensional proper intrinsic space ∅ρ′ in Fig. 1a, implies that m0 and ∅m0 are equal in magnitude,
that is, m0 = |∅m0 |.
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Fig. 2. (a) Two-dimensional rest mass (m0
0, ε

0′/c2s) of a particle on the flat two-dimensional
proper metric spacetime (ρ0′, cst

0′) of the positive time-universe, with respect to 3-observers
in the proper Euclidean 3-space of our universe, forms two-dimensional intrinsic rest mass
(∅m0, ε

′/c2s) in the projective two-dimensional proper intrinsic metric spacetime (∅ρ′,∅cs∅t′)
underneath (or that is embedded in) the flat four-dimensional rest mass of the

symmetry-partner particle in the flat four-dimensional proper metric spacetime our universe
and, (b) conversely (Figs. 11a and 11b of [3]).

Also the one-dimensional intrinsic rest mass ∅m0

in ∅ρ′ along the horizontal is equal in magnitude
to the one-dimensional rest mass m0

0 in the
scalar one-dimensional proper space ρ0′ along
the vertical, which forms (or effectively ‘projects’)
∅m0 in ∅ρ ′ along the horizontal in Fig. 11a of [3],
reproduced as Fig. 2a of this paper, as derived in
sub-section 3.1 of [3]. That is, m0

0 = |∅m0 |.

By combining m0 = |∅m0 | arrived at in the
penultimate paragraph with m0

0 = |∅m0 | arrived
at in the preceding paragraph, we have the
equality in magnitude of the three-dimensional
rest mass m0 of a particle or body in our proper
Euclidean 3-space Σ ′ and the one-dimensional
rest mass m0

0 of the symmetry-partner particle
or object in the one-dimensional scalar proper
metric space ρ0′ of the positive time-universe,
with respect to 3-observers in Σ ′ in Fig. 2a. That
is, m0 = m0

0.

Finally the one-dimensional rest mass m0
0 of a

particle or body in the one-dimensional scalar
proper space ρ0′ along the vertical, with respect
to 3-observers in our proper Euclidean 3-space
Σ ′ in Fig. 2a, is what 3-observers0 in the proper
Euclidean 3-space Σ0′ of the positive time-
universe observe as three-dimensional rest mass
m0

0 of the particle or body in Σ0′ in Fig. 2b.
Consequently the one-dimensional rest mass m0

0

of the particle or body in ρ0′ in Fig. 2a is equal

in magnitude to the three-dimensional rest mass
m0

0 of the particle or body in the proper Euclidean
3-space Σ0′ in Fig. 2b. This is certainly so since
the geometrical contraction of the Euclidean 3-
space Σ0′ to one-dimensional space ρ0′ and
the consequent geometrical contraction of the
three-dimensional rest mass m0

0 in Σ0′ to one-
dimensional rest mass m0

0 in ρ0′, with respect to
3-observers in our Euclidean 3-space Σ ′, does
not alter the magnitude of the rest mass.

In summary, we have derived the relations, m0 =
|∅m0 | and m0

0 = |∅m0 |, from which we have,
m0 = m0

0, in the above. Also since m0
0 in Σ0′

is the outward manifestation of ∅m0
0 in ∅ρ0′ in

Fig. 1b, we have the equality in magnitude of m0
0

and ∅m0
0, that is, m0

0 = |∅m0
0 |, which, along with

m0
0 = |∅m0 | derived above gives, ∅m0

0 = ∅m0.

The conclusion then is that the rest mass m0 of a
particle or body in the proper Euclidean 3-space
Σ ′ of our (or positive) universe, with respect
to 3-observers in Σ ′, is equal in magnitude
to the rest mass m0

0 of the symmetry-partner
particle or body in the proper Euclidean 3-space
Σ0′ of the positive time-universe, with respect
to 3-observers0 in Σ0′. The one-dimensional
intrinsic rest mass ∅m0 of the particle or object
in our proper intrinsic space ∅ρ ′ underlying m0

in Σ ′ in Fig. 1a, is equal in magnitude to the
intrinsic rest mass ∅m0

0 of the symmetry-partner
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particle or object in the proper intrinsic space
∅ρ0′ underlying m0

0 in Σ0′ in Fig. 1b.

By repeating the derivations done between the
positive (or our) universe and the positive time-
universe, which lead to the conclusion reached in
the preceding paragraph, between the negative
universe and the negative time-universe (which
shall not be repeated in order to conserve space),
we are also led to the conclusion that the
rest mass −m∗

0 of a particle or object in the
proper Euclidean 3-space −Σ ′∗ of the negative
universe, with respect to 3-observers in −Σ ′∗,
is equal in magnitude to the rest mass −m0

0
∗

of the symmetry-partner particle or body in the
proper Euclidean 3-space −Σ0′∗ of the negative
time-universe, with respect to 3-observers0 in
−Σ0′∗. The one-dimensional intrinsic rest mass
−∅m∗

0 of the particle or body in the proper
intrinsic space −∅ρ′∗ underlying −m∗

0 in −Σ ′∗

of the negative universe, is equal in magnitude to
the intrinsic rest mass −∅m0

0
∗ of the symmetry-

partner particle or body in the proper intrinsic
space −∅ρ0′∗ underlying −m0

0
∗ in −Σ0′∗ in the

negative time-universe.

The perfect symmetry of state between the
positive (or our) universe and the negative
universe prescribed in [1], implies that the
rest mass m0 of a particle or body in the
proper Euclidean 3-space Σ ′ of the positive
(or our) universe, is identical in magnitude,
size and shape to the rest mass −m∗

0 of
the symmetry-partner particle or body in the
proper Euclidean 3-space −Σ ′∗ of the negative
universe, that is, m0 = | − m∗

0 |. Otherwise
there cannot be symmetry of gravitational fields
and, consequently, there cannot be symmetry of
geometry of spacetime between our universe and
the negative universe, which are prescribed in [1].
The corresponding prescribed perfect symmetry
of state between the positive time-universe and
the negative time-universe, likewise implies that
the rest mass m0

0 of a particle or object in the
proper Euclidean 3-space Σ0′ of the positive
time-universe is identical in magnitude, size and
shape to the rest mass−m0

0
∗ of its symmetry-

partner in the proper Euclidean 3-space −Σ0′∗ of
the negative time-universe, that is,m0

0 = |−m0
0
∗ |.

By combining the equality of magnitudes of
the symmetry-partner rest masses, m0 = | −
m∗

0 |, which follows from the prescribed perfect

symmetry of state between the positive (or our)
universe and the negative universe and, m0

0 =
| − m0

0
∗ |, which follows from the corresponding

prescribed perfect symmetry of state between
the positive time-universe and the negative time-
universe in the preceding paragraph, with m0 =
m0

0 and hence, −m∗
0 = −m0

0
∗, derived earlier,

we obtain the equality in magnitude of the rest
masses of the four symmetry-partner particles
or bodies in the four universes, that is, m0 =
| −m∗

0 | = m0
0 = | −m0

0
∗ |. Consequently there is

equality in magnitude of the intrinsic rest masses
in the one-dimensional intrinsic metric spaces
of the quartet of symmetry-partner particles or
bodies in the four universes, that is, |∅m0 | =
| −∅m∗

0 | = |∅m0
0 | = | −∅m0

0
∗ |.

2.2 Identical Shapes and Sizes
of the Members of every
Quartet of Symmetry-
partner Particles and
Objects in the Four
Universes

Having demonstrated the equality of magnitudes
of the three-dimensional rest masses of the
members of every quartet of symmetry-partner
particles or bodies in the four universes (to the
extent that the prescribed, m0 = | − m∗

0 |,
between the positive (or our) universe and the
negative universe and, m0

0 = | −m0
0
∗ |, between

the positive time-universe and the negative time-
universe are valid), let us also show their identical
shapes and sizes.

Now the rest mass m0 being the outward
manifestation in our proper Euclidean 3-space Σ ′

of the intrinsic rest mass ∅m0 of intrinsic length
∆∅ρ ′ in the one-dimensional proper intrinsic
space ∅ρ ′, and the three-dimensional rest mass
m0

0 in the proper Euclidean 3-space Σ0′, with
respect to 3-observers in Σ0′, being what
geometrically contracts to the one-dimensional
rest mass m0

0 of length ∆ρ0′ in ρ0′, with respect
to 3-observers in our Euclidean 3-space Σ ′ in
Figs. 2a and 2b and, since ∆ρ0′ containing m0

0

in ρ0′ along the vertical projects ∆∅ρ ′ containing
∅m0 ‘underneath’ Σ ′ along the horizontal, then
the length ∆ρ0′ of the one-dimensional rest mass
m0

0 in ρ0′ has the same magnitude as the intrinsic
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length ∆∅ρ ′ of the intrinsic rest mass ∅m0 it
projects into ∅ρ ′ in Fig. 2a, that is, ∆ρ0′ =
|∆∅ρ ′ |.

Moreover the length ∆ρ0′ along ρ0′, with respect
to 3-observers Σ ′, corresponds to a volume ∆Σ0′

of Σ0′, with respect to 3-observers in Σ0′. Also
∆∅ρ ′ along ∅ρ ′ is made manifested in a volume
∆Σ ′ of Σ ′, with respect to 3-observers in Σ ′.
The equality of ∆ρ0′ and |∆∅ρ ′| concluded in the
preceding paragraph then implies that the volume
∆Σ0′ of the Euclidean 3-space Σ0′ occupied by
the three-dimensional rest mass m0

0, with respect
to 3-observers in Σ0′, is equal to the volume ∆Σ ′

of the Euclidean 3-space Σ ′ occupied by the rest
mass m0, with respect to 3-observers in Σ ′. In
other words, the rest massm0 in Σ ′ has the same
size (or volume) as its symmetry-partner m0

0 in
Σ0′.

Further more, the shape of the outward
manifestation in the proper Euclidean 3-space Σ ′

of ∅m0 in ∅ρ′, that is, the shape of m0 in Σ ′, with
respect to 3-observers in Σ ′, is the same as the
shape of the three-dimensional rest mass m0

0 in
the proper Euclidean 3-space Σ0′, with respect
to 3-observers in Σ0′. In providing justification for
this, let us recall the discussion leading to Fig. 6a
and 6b of [1], reproduced as Figs. 3a and 3b of
this paper that, the intrinsic rest masses ∅m0 of
particles and bodies, which appear as lines of
intrinsic rest masses along the one-dimensional
isotropic proper intrinsic space ∅ρ ′ relative to 3-
observers in the proper Euclidean 3-space Σ ′, as
illustrated for a few objects in Fig. 3a, are actually
three-dimensional intrinsic rest masses in three-
dimensional proper intrinsic space ∅Σ ′, with
respect to three-dimensional ‘intrinsic-rest-mass-
observers’ (or ‘intrinsic 3-observers’) in ∅Σ ′, as
also illustrated for a few objects in Fig. 3b.

Fig. 3. (a) The flat 4-dimensional spacetime and its underlying flat 2-dimensional intrinsic
spacetime with the inertial masses of three objects scattered in the Euclidean 3-space and
their one-dimensional intrinsic inertial masses aligned along the one-dimensional isotropic
intrinsic space with respect to observers in spacetime. (b) The flat 2-dimensional intrinsic
spacetime with respect to observers in spacetime in (a) is a flat four-dimensional intrinsic
spacetime containing 3-dimensional intrinsic inertial masses of particles and objects in

3-dimensional intrinsic space with respect to intrinsic-mass-observers in intrinsic spacetime
(Figs. 6a and 6b of[1]).

The shape of the three-dimensional intrinsic rest mass ∅m0 of a particle or body in the three-
dimensional intrinsic space ∅Σ ′, with respect to ‘intrinsic 3-observers’ in ∅Σ ′, is the same as the
shape of its outward manifestation in the proper Euclidean 3-space Σ ′, that is, the same as the
shape of the rest mass m0 in Σ ′, with respect to 3-observers in Σ ′.
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Since the line of intrinsic rest mass ∅m0

in one-dimensional proper intrinsic space ∅ρ ′,
relative to 3-observers in Σ ′ (which is a three-
dimensional intrinsic rest mass ∅m0 in the three-
dimensional proper intrinsic space ∅Σ ′ with
respect to ‘intrinsic 3-observers’ in ∅Σ ′), is the
effective ‘projection’ into ∅ρ′ along the horizontal
of the line of rest massm0

0 in the one-dimensional
proper space ρ0′ along the vertical, relative to
3-observers in our proper Euclidean 3-space
Σ′ in Fig. 2a (where m0

0 in ρ0′ in Fig. 2a is
a 3-dimensional rest mass m0

0 in the proper
Euclidean 3-space Σ0′ of the positive time-
universe with respect to 3-observers0 in Σ0′ in
Fig. 2b), it follows that the shape of the three-
dimensional intrinsic rest mass ∅m0 in ∅Σ ′, with
respect to ‘intrinsic 3-observers’ in ∅Σ ′, is the
same as the shape of the three-dimensional rest
mass m0

0 in Σ0′, with respect to 3-observers in
Σ0′. It then follows from this and the conclusion
(that the shape of ∅m0 in ∅Σ ′ is the same as the
shape of m0 in Σ ′), reached in the preceding two
paragraphs that, the shapes of the rest masses
m0 in our proper Euclidean 3-space Σ ′ and m0

0 in
the proper Euclidean 3-space Σ0′ of the positive
time-universe are the same.

The identical sizes and shapes of the rest mass
m0 of a particle or body in the proper Euclidean
3-space Σ ′ of our universe and of the rest
mass m0

0 of its symmetry-partner in the proper
Euclidean 3-space Σ0′ of the positive time-
universe, concluded in the preceding paragraph,
is equally true between the rest mass −m∗

0 in the
Euclidean 3-space −Σ ′∗ of the negative universe
and its symmetry-partner −m0

0
∗ in the Euclidean

3-space −Σ0′∗ of the negative time-universe.

When the preceding paragraph is combined with
the identical shapes and sizes of the rest mass
m0 of a particle or body in the proper Euclidean
3-space Σ ′ of the positive (or our) universe and of
the rest mass −m∗

0 of its symmetry-partner in the
proper Euclidean 3-space −Σ ′∗ of the negative
universe, which the prescribed perfect symmetry
of state between our universe and the negative
universe implies, as well as the identical shapes
and sizes of the rest mass m0

0 of a particle or
body in the proper Euclidean 3-space Σ0′ of the
positive time-universe and of the rest mass −m0

0
∗

of its symmetry-partner in the proper Euclidean 3-
space −Σ0′∗ of the negative time-universe, which

the prescribed perfect symmetry of state between
the positive time-universe and the negative time-
universe implies, we have the identical shapes
and sizes of the four members of a quartet
of symmetry-partner particles or bodies in the
Euclidean 3-spaces in the four universes, and this
is true for every such quartet of symmetry-partner
particles or bodies in the four universes.

The identical magnitudes, shapes and sizes of
the members of every quartet of symmetry-
partner bodies in the four universes, implies
that they give rise to identical symmetry-partner
gravitational fields in their respective universes.
Since symmetry-partner particles and bodies are
located at symmetry-partner points in spacetimes
in the four universes, it follows that gravitational
fields are symmetrically located in spacetimes
within the universes.

This fact shall be shown to imply local Lorentz
invariance (LLI) within gravitational fields in each
universe elsewhere. Since perfect symmetry
of gravitational fields among the four universes
requires that the members of every quartet of
symmetry-partner gravitational field sources in
the four universes have same magnitude of
masses, same sizes and same shapes, the
symmetry of gravitational fields among the four
universes (or the validity of LLI), implies the
validity of the prescribed symmetry of state
between our universe and the negative universe
and between the positive time-universe and
the negative time-universe, as shall be shown
elsewhere.

2.3 Perfect Symmetry of
Relative Motions among
the Members of every
Quartet of Symmetry-
Partner Particles or Bodies
in the four Universes
Always

As mentioned at the beginning of this section, the
second condition that must be met for symmetry
of state to obtain among the four universes
isolated in previous articles [1, 2, 3], whose
proper metric spacetimes and proper intrinsic
metric spacetimes are illustrated in Figs. 12a and
12b of [3], reproduced as Figs. 1a and 1b of this
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paper namely, the positive (or our) universe, the
negative universe, the positive time-universe and
the negative time-universe is that, the members
of every quartet of symmetry-partner particles
or bodies in the four universes, shown to have
identical magnitudes of masses, identical sizes
and identical shapes in the preceding sub-
section, are involved in identical motions relative
to identical symmetry-partner observers or
frames of reference in their respective universes
at all times. The reductio ad absurdum method
of proof shall be applied to show that this second
condition is also met. We shall assume that the
quartet of symmetry-partner particles or bodies
in the four universes are not involved in identical
relative motions and show that this leads to
violation of Lorentz invariance in each universe.

Let us start with the assumption that the
members of a quartet of symmetry-partner
particles or bodies in the four universes are in
arbitrary motions at different speeds relative to
the symmetry-partner observers or frames of
reference in their respective universes at every
given moment. This assumption implies that,
given an object on earth in our universe in
motion at a speed v+x along the north pole of
the earth, say, relative to our earth at a given
instant, then its symmetry-partner on earth in the
negative universe is in motion at a speed v−x ,
say, along the north pole relative to the earth
of the negative universe at the same instant;
the symmetry-partner object on earth in the
positive time-universe is in motion at a speed
v+
x0

, say, along the north pole relative to the
earth of the positive time-universe, at the same
instant and the symmetry-partner object on earth
in the negative time-universe is in motion at a
speed v−

x0
, say, along the north pole relative to

the earth of the negative time-universe, at the
same instant, where it is being assumed that
the speeds, v+x , v−x , v+

x0
and v−

x0
, have different

magnitudes and each can take on arbitrary
values lower than c, including zero. They may
as well be assumed to be moving along arbitrary
directions on earths in their respective universes.

The geometrical implication of the assumption
made in the preceding paragraph is that the equal
intrinsic angle ∅ψ of relative rotations of intrinsic
affine space and intrinsic affine time coordinates

in the four quadrants of the hyper-plane of the
larger spacetime of combined positive (or our)
universe and the negative universe, drawn upon
the reference proper metric spacetimes and
intrinsic metric spacetimes of the positive (or our)
universe and the negative universe in Fig. 1a of
this article, as Fig. 8a of [1] reproduced as Fig. 4
of this article, will take on different values, ∅ψ+

x ,
∅ψ−

x , ∅ψ+
t and ∅ψ−

t , as illustrated in Fig. 5a.

Only the inclined primed intrinsic affine
spacetime coordinates, their projective flat
unprimed intrinsic affine spacetime coordinates
and the outward manifestations of the latter
namely, the unprimed four-dimensional affine
spacetimes, (Σ̃, cst̃) and (−Σ̃∗,−cst̃∗), of our
universe and the negative universe are shown in
Fig. 5a. The flat four-dimensional proper metric
spacetimes, (Σ ′, cst

′) and (−Σ ′∗,−cst′∗), in
which the ‘stationary’ observers are located,
and their underlying two-dimensional proper
intrinsic metric spacetimes, (∅ρ ′,∅cs∅t′) and
(−∅ρ ′∗,−∅cs∅t′∗), are not shown in Fig. 5a for
convenience. The proper metric spacetimes and
underlying proper intrinsic metric spacetimes
are shown in Fig. 8a of [1], reproduced as
Fig. 4 of this article for the normal situation,
∅ψ+

x = ∅ψ−
x = ∅ψ+

t = ∅ψ−
t .

The rotations of the primed intrinsic affine space
coordinate ∅x̃ ′ by intrinsic angle ∅ψ+

x relative to
the unprimed intrinsic affine space coordinate
∅x̃ along the horizontal in the first quadrant
and the rotation of the primed intrinsic affine
time coordinate ∅cs∅t̃ ′ by intrinsic angle ∅ψ+

t

relative to the unprimed intrinsic affine time
coordinate ∅cs∅t̃ along the vertical in the second
quadrant in Fig. 5a, are valid with respect to the
‘stationary’ 3-observer in the proper Euclidean
3-space Σ ′ (not shown in that figure) where,
sin∅ψ+

x = ∅v+x /∅c and sin∅ψ+
t = ∅v+t /∅c,

have been derived in [1].

The rotation of −∅x̃ ′∗ by intrinsic angle ∅ψ−
x

relative to −∅x̃ ∗ along the horizontal in the
third quadrant and the rotation of −∅cs∅t̃ ′∗ by
intrinsic angle ∅ψ−

t relative to −∅cs∅t̃ ∗ along
the vertical in the fourth quadrant in Fig. 5a, are
valid with respect to the ‘stationary’ 3-observer*
in the proper Euclidean metric 3-space −Σ′∗

(also not shown) where, sin∅ψ−
x = ∅v−x /∅c and

sin∅ψ−
t = ∅v−t /∅c.
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Fig. 4. The projective unprimed intrinsic affine spacetime is embedded in the proper intrinsic
metric spacetime and the unprimed affine spacetime is embedded in the proper metric

spacetime (Fig. 8a of [1]).

s

s

s

s

s

s

s

s

:

Fig. 5. (a) Rotations of intrinsic affine spacetime coordinates of the particles’ primed intrinsic
affine frames relative to particles’ unprimed intrinsic affine frames in our universe and
negative universe, with respect to the ‘stationary’ symmetry-partner 3-observers in the
proper Euclidean 3-spaces of our (or positive) universe and the negative universe (not

shown), due to assumed non-symmetrical motions of symmetry-partner particles relative to
symmetry-partner observers in our universe and negative universe.

The assumption, ∅v+x ̸= ∅v−x ̸= ∅v+t ̸= ∅v−t , which implies, ∅ψ+
x ̸= ∅ψ−

x ̸= ∅ψ+
t ̸= ∅ψ−

t , between
our universe and the negative universe, corresponds to the assumption, ∅v+

x0
̸= ∅v−

x0
̸= ∅v+

t0
̸=

∅v−
t0

, which implies, ∅ψ+
x0

̸= ∅ψ−
x0

̸= ∅ψ+
t0

̸= ∅ψ−
t0

, between the positive time-universe and the
negative time-universe. Thus corresponding to Fig. 5a in our universe and the negative universe is
Fig. 5b in the positive time-universe and the negative time-universe.
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(x, y, z )
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:

Fig. 6. (b) Rotations of intrinsic affine spacetime coordinates of the particles’ primed intrinsic
affine frames relative to particles’ unprimed intrinsic affine frames in the positive

time-universe and the negative time-universe, with respect to the ‘stationary’
symmetry-partner 3-observers in the proper Euclidean 3-spaces of the positive time-universe

and the negative time-universe (not shown), due to assumed non-symmetrical motions of
symmetry-partner particles relative to symmetry-partner observers in the positive

time-universe and the negative time-universe

The rotations of the primed intrinsic affine space
coordinate ∅x̃ 0′ by intrinsic angle ∅ψ+

x0
relative

to the unprimed intrinsic affine space coordinate
∅x̃ 0 along the vertical in the first quadrant,
and the rotation of the primed intrinsic affine
time coordinate ∅cs∅t̃ 0′ by intrinsic angle ∅ψ+

t0

relative to the unprimed intrinsic affine time
coordinate ∅cs∅t̃ 0 along the horizontal in the
fourth quadrant in Fig. 5b, are valid with respect
to the ‘stationary’ 3-observer0 in Σ0′ along the
vertical in the first quadrant (not shown) in Fig. 5b
where, sin∅ψ+

x0 = ∅v+
x0
/∅c and sin∅ψ+

t0
=

∅v+
t0
/∅c.

The rotation of the primed intrinsic affine space
coordinate −∅x̃ 0′∗ at intrinsic angle ∅ψ−

x0

relative to the unprimed intrinsic affine space
coordinate −∅x̃ 0∗ along the vertical in the third
quadrant and the rotation of −∅cs∅t̃ 0′∗ by ∅ψ−

t0

relative to −∅cs∅t̃ 0∗ along the horizontal in
the second quadrant in Fig. 5b, are valid with
respect to the ‘stationary’ 3-observer0∗ in −Σ0′∗

aong the vertical in the third quadrant (also not
shown) in Fig. 5b where, sin∅ψ−

x0
= ∅v−

x0
/∅c

and sin∅ψ−
t0

= ∅v−
t0
/∅c.

By following the procedure used to derive partial
intrinsic Lorentz transformation with respect to

the ‘stationary’ 3-observer in Σ ′ in [1] from Fig. 8a
of that article, reproduced as Fig/4̇ of this article,
the unprimed intrinsic affine coordinate ∅x̃ along
the horizontal is the projection of the inclined ∅x̃ ′

in the first quadrant in Fig. 5a. That is, ∅x̃ =
∅x̃ ′ cos∅ψ+

x . We must express the inclined ∅x̃ ′

in terms of its projection ∅x̃ along the horizontal
and write

∅x̃ ′ = ∅x̃ sec∅ψ+
x . (1)

Equation (1) is all the intrinsic affine coordinate
transformation that could have been possible
with respect to the 3-observer in Σ ′ along
the horizontal in the first quadrant in Fig. 5a,
but for the fact that the inclined negative
intrinsic affine time coordinate −∅cs∅t̃ ′∗ of
the negative universe rotated into the fourth
quadrant in that figure also projects a component
−∅cs∅t̃ ′ sin∅ψ−

t along the horizontal, which
must be added to the right-hand side of Eq. (1)
to have

∅x̃ ′ = ∅x̃ sec∅ψ+
x −∅cs∅t̃ ′ sin∅ψ−

t ; (2a)

(w.r.t 3− observer in Σ ′).

The dummy star label on −∅cs∅t̃ ′∗ sin∅ψ−
t

projected along the horizontal has been removed,
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since this projected component is now an intrinsic
coordinate in the positive universe. Figure 5a is
the same as Fig. 4 of this article, except that the
different intrinsic angles, ∅ψ+

x , ∅ψ−
x , ∅ψ+

t and
∅ψ−

t in Fig. 5a are each equal to ∅ψ in Fig. 4.

Now, −∅cs∅t̃∗ = −∅cs∅t̃′∗ cos∅ψ−
t , along the

vertical in the fourth quadrant in Fig. 5a. This
implies ∅cs∅t̃ ′ = ∅cs∅t̃ sec∅ψ−

t . This equation
exists alongside the transformation (2a). Using it
at the right-hand side of (2a) gives

∅x̃ ′ = ∅x̃ sec∅ψ+
x −∅cs∅t̃ sec∅ψ−

t sin∅ψ−
t ;
(2b)

(w.r.t 3− observer in Σ ′). Equation (2b) is
the final form of the partial intrinsic Lorentz
transformation that the ‘stationary’ 3-observer in
Σ ′ in our universe can derive along the horizontal
in the first quadrant from Fig. 5a.

By applying the same procedure used to derive
Eq. (2b) from the first and fourth quadrants of
Fig. 5a to the first and second quadrants of
Fig. 5b, the counterpart of Eq. (2b), which is
valid with respect to the ‘stationary’ 3-observer0

in Σ0′ along the vertical in the first quadrant in
that figure is the following

∅x̃ 0 ′
= ∅x̃ 0

sec∅ψ+

x0 − ∅cs∅t̃ 0 sec∅ψ−
t0 sin∅ψ−

t0 ; (3)

(w.r.t 3− observer0 in Σ0 ′). Again Eq. (3)
is the final form of the partial intrinsic Lorentz
transformation that the ‘stationary’ 3-observer0 in

Σ0′ in the positive time-universe can derive along
the vertical in the first quadrant in Fig. 5b.

Figure 5b cannot serve the role of the
complementary diagram to Fig. 5a, because it
contains the spacetime and intrinsic spacetime
coordinates of the positive time-universe and
negative time-universe, which are elusive to
observers in our universe and negative universe
and cannot appear in physics in our universe and
negative universe. The partial intrinsic Lorentz
transformation (3) derived with respect to the
‘stationary’ 3-observer0 in Σ0′ in the positive
time-universe from Fig. 5b, cannot complement
Eq. (2b) derived with respect to the symmetry-
partner ‘stationary’ 3-observer in Σ′ in our
universe from Fig. 5a.

In order to make Fig. 5b a valid complementary
diagram to Fig. 5a, the spacetime and intrinsic
spacetime coordinates of the positive and
negative time-universes in it must be transformed
into those of our universe and the negative
universe, as done with the aid of system (15) of
of [3], reproduced here as system (4)

Σ̃0 → cs t̃ ; cs t̃
0 → Σ̃ ; −Σ̃ 0∗ → −cs t̃ ∗ ;

−cs t̃ 0∗ → −Σ̃∗ ; ∅x̃ 0 → ∅cs∅t̃ ;∅cs∅t̃ 0 → ∅x̃ ;

−∅x̃0∗ → −∅cs∅t̃∗ ; −∅cs∅t̃ 0∗ → −∅x̃∗ ;

∅x̃ 0′ → ∅cs∅t̃ ′ ; ∅cs∅t̃ 0′ → ∅x̃′ ;

−∅x̃0′∗ → −∅cs∅t̃ ′∗ ;−∅cs∅t̃ 0′∗ → −∅x̃ ′∗.
(4)

By implementing system (4) on Fig. 5b we have Fig. 5c that can serve as complementary diagram to
Fig. 5a.

s

s

s

s

s
s

Fig. 7. (c) Complementary diagram to Fig. 5a obtained by transforming the spacetime and
intrinsic spacetime coordinates of the positive time-universe and the negative time-universe

in Fig. 5b into the spacetime and intrinsic spacetime coordinates of our universe and the
negative universe; is valid with respect to 1-observers in the proper metric time dimensions

of our universe and the negative universe (not shown)
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It has so far been assumed that the break in
symmetry of relative motions of the quartet of
symmetry-partner particles or objects in the four
universes is such that the eight intrinsic angles in
Figs. 5a and 5b are different in general, that is,
∅ψ+

x ̸= ∅ψ−
x ̸= ∅ψ+

t ̸= ∅ψ−
t ̸= ∅ψ+

x0
̸= ∅ψ−

x0
̸=

∅ψ+
t0

̸= ∅ψ−
t0

, and consequently, the associated
eight relative intrinsic speeds are different in
general, that is, ∅v+x ̸= ∅v−x ̸= ∅v+t ̸= ∅v−t ̸=
∅v+

x0
̸= ∅v−

x0
̸= ∅v+

t0
̸= ∅v−

t0
. However this

assumption is invalid as explained hereunder.

What appears as primed intrinsic affine time
coordinate ∅c∅t̃ ′ that is rotated relative to
unprimed intrinsic affine time coordinate ∅c∅t̃
at intrinsic angle ∅ψ+

t along the vertical in the
second quadrant, with respect to the 3-observer
in our Euclidean 3-space Σ′ in Fig. 5a, is the
rotated primed intrinsic affine space coordinate
∅x̃ 0′ relative to unprimed intrinsic affine space
coordinate ∅x̃ 0 at intrinsic angle ∅ψ+

x0
along the

vertical in the first quadrant, with respect to the
3-observer0 in Σ0′ in Fig. 5b. Hence the intrinsic
angles ∅ψ+

t in Fig. 5a and ∅ψ+
x0

in Fig. 5b are

equal. The same reasoning leads to the equality
of the intrinsic angle ∅ψ−

t in Fig. 5a and ∅ψ−
x0

in
Fig. 5b.

Also the rotation of the primed intrinsic affine
space coordinate ∅x̃ ′ relative to the unprimed
intrinsic affine space coordinate ∅x̃ at intrinsic
angle ∅ψ+

x along the horizontal in the first
quadrant, with respect to the 3-observer in our
Euclidean 3-space Σ′ in Fig. 5a, is what appears
as rotated primed intrinsic affine time coordinate
∅c∅t̃ 0′ relative to unprimed intrinsic affine time
coordinate ∅c∅t̃ 0 at intrinsic angle ∅ψ+

t0
along

the horizontal in the fourth quadrant in Fig. 5b.
Hence the intrinsic angles ∅ψ+

x in Fig. 5a and
∅ψ+

t0
in Fig. 5b are immutably equal. The same

reasoning leads to the immutable equality of
the intrinsic angles ∅ψ−

x in Fig. 5a and ∅ψ−
t0

in
Fig. 5b.

In summary, we have the following equalities
of intrinsic angles between Figs. 5a and 5b and
the implied equalities of the associated relative
intrinsic speeds

∅ψ+
t0 = ∅ψ+

x ;∅ψ−
t0 = ∅ψ−

x ;∅ψ+
x0 = ∅ψ+

t ;∅ψ−
x0 = ∅ψ−

t (5a)

and
∅v+t0 = ∅v+x ;∅v−t0 = ∅v−x ;∅v+x0 = ∅v+t ;∅v−x0 = ∅v−t . (5b)

System (5a) or (5b) states that break in symmetry of relative motion between symmetry-partner
particles in our (or positive) universe and the positive time-universe and between the negative universe
and the negative time-universe does not exist in nature. This shall be described as unbroken (or
perfect) vertical symmetry of relative motion among the four universes.

Whereas, apart from the so far prescribed perfect symmetry of state (which includes symmetry of
relative motion), between our universe and the negative universe and between the positive time-
universe and the negative time-universe, broken symmetry of relative motion between symmetry-
partner particles in our universe and the negative universe and between symmetry-partner particles
in the positive time-universe and the negative time-universe, are assumable. The symmetry of relative
motion between our universe and the negative universe and between the positive time-universe and
the negative time-universe shall be described as horizontal symmetry of relative motions among the
four universes.

While system (5a) or (5b) states the perfect (or unbroken) vertical symmetry of relative motions
among the four universes, the following inequalities state the assumed broken horizontal symmetry
of intrinsic relative motions in intrinsic spacetimes between our universe and the negative universe
and, consequently, between the positive time-universe and the negative time-universe, or among the
four universes

∅ψ+
x ̸= ∅ψ−

x ̸= ∅ψ+
t ̸= ∅ψ−

t , or, ∅v+x ̸= ∅v−x ̸= ∅v+t ̸= ∅v−t . (6a)
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The outward manifestation in spacetime of system (6a) that states assumed break in horizontal
symmetry of relative motions in spacetimes among the four universes is

ψ+
x ̸= ψ−

x ̸= ψ+
t ̸= ψ−

t , or, v+x ̸= v−x ̸= v+t ̸= v−t . (6b)

It is to be observed that, apart from implementing the transformations of intrinsic affine spacetime
coordinates and affine spacetime coordinates in system (4) on Fig. 5b in drawing Fig. 5c, the equalities
of intrinsic angles of system (5a) have also been implemented. In other words, only break in horizontal
symmetry of relative motions among the four universes, stated by systems (6a) and (6b), is what has
been assumed in Fig. 5a and its complementary diagram of Fig. 5c in our universe and the negative
universe.

Figure 5c, obtained from Fig. 5b, contains the affine spacetime and intrinsic affine spacetime coordinates
of the positive (or our) universe and the negative universe. It is now a valid complementary diagram
to Fig. 5a for the purpose of deriving ∅LT and LT in our universe and negative universe. It is to be
remembered that the 3-observers0 in the Euclidean 3-spaces, Σ0′ and −Σ0′∗, of the positive time-
universe and the negative time-universe (not shown) in Fig. 5b, have transformed into 1-observers in
the proper time dimensions, cst′ and −cst′∗, of our universe and the negative universe (not shown)
in Fig. 5c.

The partial intrinsic Lorentz transformation with respect to the ‘stationary’ 1-observer in cst
′ along

the vertical in the first quadrant (not shown) in Fig. 5c, must be derived as done from Fig. 8b of [1],
reproduced as Fig. 4 of this article. However the required partial intrinsic Lorentz transformation shall
be obtained by transforming the intrinsic affine spacetime coordinates of the positive time-universe in
Eq. (3) derived from Fig. 5b to the intrinsic affine spacetime coordinates of our universe using system
(4) giving

∅cs∅t̃ ′ = ∅cs∅t̃ sec∅ψ+
t −∅x̃ sec∅ψ−

x sin∅ψ−
x ; (7)

(w.r.t. 1− oberver in cst
′) .

The partial intrinsic Lorentz transformation (7) with respect to the ‘stationary’ 1-observer in cst
′,

derived from Fig. 5c, is a valid complementary intrinsic Lorentz transformation to Eq. (2b) derived
with respect to the ‘stationary’ 3-observer in Σ′ from Fig. 5a. Collecting Eqs. (2b) and (7) gives the
full intrinsic Lorentz transformation (∅LT) with assumed break in horizontal symmetry, that is, break
in symmetry of relative motions of symmetry-partner particles between our universe and the negative
universe and, consequently, between the positive time-universe and the negative time-universe.

∅x̃ ′ = ∅x̃ sec∅ψ+
x −∅cs∅t̃ sec∅ψ−

t sin∅ψ−
t ;

(w.r.t 3− observer in Σ ′) ;
∅cs∅t̃ ′ = ∅cs∅t̃ sec∅ψ+

t −∅x̃ sec∅ψ−
x sin∅ψ−

x ;
(w.r.t. 1− oberver in cst

′) .

(8)

Using the definitions,

sin∅ψ+
x = ∅v+x /∅c ; sin∅ψ−

x = ∅v−x /∅c ; sin∅ψ+
t = ∅v+t /∅c and

sin∅ψ−
t = ∅v−t /∅c , (9)

system (8) is given explicitly in terms of relative intrinsic speeds as

∅x̃ ′ = (1− (∅v+x )2

∅c2
)−1/2∅x̃− (1− (∅v−t )2

∅c2
)
−1/2

(∅v−t )∅t̃ ;
(w.r.t. 3− observer in Σ ′) ;

∅t̃ ′ = (1− (∅v+t )2

∅c2
)−1/2∅t̃− (1− (∅v−x )2

∅c2
)
−1/2∅v−x

∅c2
∅x̃ ;

(w.r.t. 1− observer in ct′)

(10)
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The outward manifestation on the flat four-dimensional spacetime of systems (8) and (10) are given
respectively as

x̃ ′ = x̃ secψ+
x − cs t̃ secψ

−
t sinψ−

t ;
(w.r.t 3− observer in Σ ′) ;

cst̃
′ = cs t̃ secψ

+
t − x̃ secψ−

x sinψ−
x ;

(w.r.t. 1− oberver in cst
′) .

(11)

and

x̃ ′ = (1− (v+x )
2

c2
)−1/2x̃− (1− (v−t )

2

c2
)
−1/2

(v−t )t̃ ;

(w.r.t. 3− observer in Σ ′) ;

t̃ ′ = (1− (v+t )
2

c2
)−1/2t̃− (1− (v−x )

2

c2
)
−1/2

v−x
c2
x̃ ;

(w.r.t. 1− observer in cst
′)

(12)

As can be easily shown, system (8) or (10)
contradicts (or does not lead to) intrinsic Lorentz
invariance (∅LI) in ∅SR, given break in horizontal
symmetry of relative intrinsic motions in intrinsic
spacetimes among the four universes of system
(6a). System (11) or (12) likewise does not lead
to Lorentz invariance (LI) in SR, given break
in horizontal symmetry of relative motions in
spacetimes among the four universes of system
(6a).

Even if only one of the four intrinsic angles in
Figs. 5a and 5c (or in system (6a)) is different
from the rest (or if only one of the four associated
intrinsic speeds in those figure is different from
the rest), system (8) or (10) will still contradict
∅LI. And if only one of the four angles is different
from the rest (or if only one of the four associated
speeds is different from the rest) in system (6b),
system (11) or (12) will still contradict LI.

The assumption made initially that members of a
quartet of symmetry-partner particles or objects
in the four universes are in non-symmetrical
relative motions in the universes, is tantamount to
break in both vertical and horizontal symmetries
of relative motions among the four universes.
However as shown in the development that
leads to system (5a) or (5b), only a break in
horizontal symmetry of relative motions, stated
by systems (6a) and (6b), is assumable, while
vertical symmetry of relative motions (system
(5a) or (5b)) is immutable.

Thus the assumption of break in horizontal
symmetry of relative motions of symmetry-
partner particles (between our universe and the
negative universe and, consequently, between

the positive time-universe and the negative time-
universe), stated by systems (6a) and (6b),
along with immutable vertical symmetry stated
by system (5a) or (5b), which gives rise to
Figs. 5a and 5c, leads to non-validity of intrinsic
Lorentz invariance in intrinsic special relativity
(∅SR) and, consequently, the non-validity of
Lorentz invariance in special relativity (SR) in our
universe and, indeed, in the four universes. This
negates the assumption of break in horizontal
symmetry of relative motions of symmetry-
partner particles in the four universes, since
Lorentz invariance is immutable on the flat four-
dimensional spacetime of SR in each universe.

The unbroken (or perfect) horizontal symmetry of
relative motions of symmetry-partner particles
among the four universes (∅ψ+

x = ∅ψ−
x =

∅ψ+
t = ∅ψ−

t , or, ∅v+x = ∅v−x = ∅v+t = ∅v−t ),
implied by the preceding paragraph, along
with immutable vertical symmetry of relative
motions of symmetry-partner particles in the four
universes (system (5a) or (5b)), implies that all
the four members of every quartet of symmetry-
partner particles or objects in the four universes
are in identical (or symmetrical) relative motions
at all times.

It has been shown that the members of every
quartet of symmetry-partner particles or objects
in the four universes have identical magnitudes
of masses, identical shapes and identical sizes
in the preceding sub-section. They therefore give
rise to identical gravitational fields in spacetimes
in their respective universes. There is however
the underlying assumption in the derivations
that symmetry-partner particles and bodies in
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our universe and the negative universe have
identical magnitudes of masses, identical shapes
and identical sizes and, consequently, symmetry-
partner particles and bodies in the positive time-
universe and the negative time-universe, have
identical magnitudes of masses, identical shapes
and identical sizes. This underlying assumption
is the same as the assumption of symmetry of
gravitational fields between our universe and
the negative universe and between the positive
time-universe and the negative time-universe.
It requires the propagation of the four-world
picture to the theory of gravitation to validate
this underlying assumption.

It has also been shown that the members of every
quartet of symmetry-partner particles or objects
in the four universes are involved in symmetrical
relative motions at all times in this sub-section.

Perfect symmetry of gravitational fields in
spacetimes and perfect symmetry of relative
motions of symmetry-partner particles in
spacetimes in the four universes are the
requirements for symmetry of states to obtain
among the four universes, as mentioned at
the beginning of this section. Thus perfect
(or unbroken) symmetry of state among the
four universes has been established in this
section. The underlying assumption of symmetry
of gravitational fields between our (or positive)
universe and the negative universe and between
the positive time-universe and the negative
time-universe in the derivations, requires the
propagation of the four-world picture to the theory
of gravitation to validate, as mentioned above.

3 SHOWING PERFECT SYM-
METRY OF NATURAL LAWS
AMONG THE ISOLATED
FOUR UNIVERSES

The four universes encompassed by Figs. 1a
and 1b are the positive (or our) universe with
flat proper metric spacetime (Σ ′, cst

′) of classical
gravitation (CG) and SR and its underlying
flat two-dimensional proper intrinsic metric
spacetime (∅ρ′,∅cs∅t′) of intrinsic classical
gravity (∅CG) and intrinsic special relativity
(∅SR) and the negative universe with flat proper

metric spacetime (−Σ ′∗,−cst′∗) of CG and SR
and its underlying two-dimensional flat proper
intrinsic metric spacetime (−∅ρ′∗,−∅cs∅t′∗) of
∅CG and ∅SR in Fig. 1a.

The third universe is the one with flat proper
metric spacetime (Σ0′, cst

0′) of CG and SR
and its underlying flat proper intrinsic metric
spacetime (∅ρ0′,∅cs∅t0′) of ∅CG and ∅SR in
Fig. 1b. This third universe is the positive time-
universe. It is so referred to, because its proper
Euclidean 3-space Σ0′ and its proper intrinsic
space ∅ρ0′ are the proper time dimension
cst

′ and proper intrinsic time dimension ∅cs∅t′
respectively of the positive (or our) universe. It
thereby appears as the time dimensions cst

′

containing one-dimensional particles and objects
relative to 3-observers in our Euclidean 3-space
Σ′.

The fourth universe is the one with flat proper
metric spacetime (−Σ0′∗,−cst0′∗) of CG and
SR and its underlying flat proper intrinsic metric
spacetime (−∅ρ0′∗,−∅cs∅t0′∗) of ∅CG and
∅SR in Fig. 1b. This fourth universe is the
negative time-universe. It is so referred to,
because its proper Euclidean 3-space −Σ0′∗

and its proper intrinsic space −∅ρ0′∗ are the
proper time dimension −cst′∗ and the proper
intrinsic time dimension −∅cs∅t′∗ respectively
of the negative universe. It thereby appears
as the time dimensions −cst′∗ containing one-
dimensional particles and objects relative to 3-
observers* in the Euclidean 3-space −Σ′∗ of the
negative universe.

The four worlds (or universes) encompassed
by Figs. 1a and 1b, listed above, co-exist
in nature and exhibit perfect symmetry of
state, as established in the preceding section.
Perfect symmetry of natural laws among the
four universes shall be demonstrated hereunder.
Perfect symmetry of natural laws among the four
universes is inevitable, otherwise symmetry of
state will be impossible among them.

In Table I is summarized the signs of spacetime
intervals and dimensions, some parameters and
intrinsic parameters and some physical constants
and intrinsic constants in the positive time-
universe and the negative time-universe. Table I
of this paper has been built in symmetry with
Table I of [2] between our (or positive) universe
and the negative universe.
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Table 1. Signs of spacetime and intrinsic spacetime dimensions, some physical parameters
and intrinsic parameters and physical constants and intrinsic constants in the positive

time-universe and the negative time-universe

Physical quantity Symbol Intrinsic Sign
or constant quantity positive negative

or constant time- time-
universe universe

Distance (or dimension)
of space dx0 or x0 d∅x0 or ∅x0 + −
Interval (or dimension)
of time dt0 or t0 d∅t0 or ∅t0 + −
Mass m0 ∅m0 + −
Electric charge q0 ∅q0 + or − − or +
Absolute entropy S0 ∅S0 + −
Absolute temperature T 0 ∅T 0 + +
Energy (total, kinetic) E0 ∅E0 + −
Potential energy U0 ∅U0 + or − − or +
Radiation energy hν0 ∅h∅ν0 + −
Electrostatic potential Φ0

E ∅Φ0
E + or − + or −

Gravitational potential Φ0
g ∅Φ0

g − −
Gravitational field g⃗ 0 ∅g0 − +

Electric field E⃗ 0 ∅E 0 + or − − or +
Magnetic field B⃗ 0 ∅B 0 + or − − or +
Planck constant h0 ∅h0 + +
Boltzmann constant k0 ∅k0 + −
Thermal conductivity k0 ∅k0 + −
Specific heat capacity c0p ∅c0p + +
velocity v⃗ ∅v + or − + or −
Speed of light c ∅c + +
Electric permittivity ϵoo ∅ϵoo + +
Magnetic permeability µo

o ∅µo
o + +

Angular measure θ0, φ0 ∅θ0,∅φ0 + or − + or −
Parity Π0 ∅Π0 + or − − or +
Ang. momentum L⃗ 0 ∅L0 + or − + or −
Intrinsic spin s0 ∅s0 + or − + or −
Mag. moment µ0 ∅µ0 + or − + or −
...

...
...

...
...

The superscript “0” that appears on dimensions
and intrinsic dimensions, parameters and
intrinsic parameters and on constants and
intrinsic constants in Table I, is a dummy label
used to differentiate the spacetime dimensions
and intrinsic spacetime dimensions, physical
parameters and intrinsic parameters and physical
constants and intrinsic constants of the positive
time-universe and the negative time-universe
from those of the positive (or our) universe

and the negative universe in Table I of [2].
In other words Table I of [2] between our (or
positive) universe and the negative universe is
the same as Table I of this paper between the
positive time-universe and the negative time-
universe, but for the appearance of the dummy
superscript “0” label on dimensions/intrinsic
dimensions, parameters/intrinsic parameters and
constants/intrinsic constants in Table I of this
paper.
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Now the demonstration of perfect symmetry
of natural laws between the positive (or our)
universe and the negative universe in [2],
involves three steps. At the first step, affine
spacetime/intrinsic affine spacetime diagrams
are derived in [1] upon the flat proper metric
spacetime and proper intrinsic metric spacetime
of combined positive (or our) universe and
the negative universe in Fig. 7 of that article,
reproduced as Fig. 1a of this article. The
intrinsic Lorentz transformations and Lorentz
transformations (∅LT/LT) are then derived in the
positive universe and the negative universe from
those diagrams, thereby establishing intrinsic
Lorentz invariance (∅LI) on flat two-dimensional
intrinsic spacetimes and Lorentz invariance (LI)
on flat four-dimensional spacetimes in the two
universes in [1].

The first step in demonstrating perfect symmetry
of laws between the positive (or our) universe
and the negative universe in Fig. 1a of
this article described above, applies directly
between the positive time-universe and the
negative time-universe. The counterparts of
the affine spaetime/intrinsic affine spacetime
diagrams toward the derivations of intrinsic
Lorentz transformation (∅LT) and Lorentz
transformation (LT), which are drawn upon
the combined metric spacetimes and intrinsic
metric spacetimes of the positive universe and
negative universe, encompassed by Fig. 1a of
this article as reference, can be drawn upon the
combined metric spacetimes and intrinsic metric
spacetimes of the positive time-universe and
negative time-universe encompassed by Fig. 1b
of this article as reference. Intrinsic Lorentz
transformations and Lorentz transformation
(∅LT/LT) can then be derived from them in the
positive time-universe and the negative time-
universe. These shall not be done here however
in order to conserve space, but it is straight
forward to do. Intrinsic Lorentz invariance (∅LI)
on flat two-dimensional intrinsic spacetimes and
Lorentz invariance (LI) on flat four-dimensional
spacetimes in the positive time-universe and the
negative time-universe then follow with respect to
observers in those universes.

The second step in demonstrating the symmetry
of natural laws between the positive (or our)
universe and the negative universe in [2],

involves the derivation of the relative signs of
spacetime dimensions and intrinsic spacetime
dimensions, physical parameters and physical
constants and of intrinsic parameters and
intrinsic constants, between the our universe and
negative universe and summarized in Table I
of that article. Again this second step applies
directly between the positive time-universe and
the negative time-universe. The relative signs
of spacetime dimensions and intrinsic spacetime
dimensions, physical parameters and physical
constants and of intrinsic parameters and
intrinsic constants, which are derivable between
the positive time-universe and the negative time-
universe, summarized in Table I above, follow
directly from the derived signs of spacetime
dimensions and intrinsic spacetime dimensions,
physical parameters and physical constants and
of intrinsic parameters and intrinsic constants, in
the positive (or our) universe and the negative
universe in [1] and summarized in Table I of that
paper.

The third and final step in demonstrating the
symmetry of natural laws between the positive
(or our) universe and the negative universe in
[2], consists in replacing the positive spacetime
dimensions and the signs of physical parameters
and physical constants that appear in (the
local instantaneous differential) natural laws
in our (or positive) universe by the negative
spacetime dimensions and the derived signs of
physical parameters and physical constants of
the negative universe (summarized in Table I of
[2]), and showing that these operations leave all
natural laws unchanged in the negative universe,
as demonstrated in section 5 of [2].

The third step in the demonstration of the perfect
symmetry of natural laws between the positive
(or our) universe and the negative universe
described in the preceding paragraph, applies
directly between the positive time-universe and
the negative time-universe as well. Having
established Lorentz invariance between the
positive time-universe and the negative time-
universe at the first step, it is straight forward
to use Table I above and follow the procedure in
section 5 of [2] to demonstrate the invariance of
natural laws between the positive time-universe
and negative time-universe.
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Finally the established validity of Lorentz
invariance in the four universes encompassed by
Figs. 1a and 1b, coupled with the identical signs
of spacetime dimensions, physical parameters
and physical constants in the positive (or our)
universe and the positive time-universe and
the identical signs of spacetime dimensions,
physical parameters and physical constants in
the negative universe and negative time-universe
in, Table I of [2] and Table I above, guarantee the
invariance of natural laws between the positive
(or our) universe and the positive time-universe
and between the negative universe and the
negative time-universe. These along with the
established invariance of natural laws between
the positive (or our) universe and the negative
universe and between the positive time-universe
and the negative time-universe, then guarantee
the invariance of natural laws among the four
universes.

Symmetry of natural laws among the four
universes encompassed by Figs. 1a and 1b of
this paper namely, the positive (or our) universe
and the negative universe (in Fig. 1a), the positive
time-universe and the negative time-universe
(in Fig. 1b), has thus been shown. Perfect
symmetry of state among the universes has
been demonstrated in the preceding section.
The coexisting four universes can therefore be
described as coexisting symmetrical universes.
They have also been described as
compartment universes (coexisting
symmetrical universes in separate spacetime
‘compartments’) in [3].

The fact that the coexisting universes exist
in separate four-dimensional spacetimes of
identical extents; that particles and bodies are
symmetrically distributed in spacetimes within
the universes and that the universes exhibit
perfect symmetry of state and perfect symmetry
of natural laws, in the new concept of many
universes of the previous papers [1, 2, 3] and
this paper (referred to as compartment
universes concept), differentiate the new
concept from the existing concepts of
many universes, as remarked under
the Introduction of [3].

4 NON-EVOLUTION OF THE
FLAT FOUR-DIMENSIONAL
PROPER METRIC SPACE-
TIME AND ITS UNDERLYING
FLAT TWO-DIMENSIONAL
PROPER INTRINSIC METRIC
SPACETIME IN THE
CONTEXTS OF SPECIAL
RELATIVITY AND INTRINSIC
SPECIAL RELATIVITY

The flat four-dimensional proper metric
spacetime, which is composed of the proper
Euclidean metric 3-space Σ′ and the proper
metric time dimension cst′ in the first quadrant in
Fig. 1a, is the flat four-dimensional proper metric
spacetime of classical gravitation, classical
mechanics, the special theory of relativity
(SR) and relativistic mechanics, in the positive
(or our) universe. It is usually denoted by
(x0′, x1′, x2′, x3′), but the more convenient
notation (Σ′, cst), where Σ′ is the proper
Euclidean 3-space with dimensions, x1′, x2′ and
x3′, has been adopted uniformly in the previous
papers [1, 2, 3] and this paper. The (Σ′, cst)
is the flat proper four-dimensional spacetime
manifold in which different metric spacetime
frames, (x1′, x2′, x3′, cst

′), (x1′′, x2′′, x3′′, cst
′′),

(x1′′′, x2′′′, x3′′′, cst′′′), etc, can be prescribed, in
the adopted notation.

When the special theory of relativity operates on
the flat four-dimensional proper metric spacetime
(Σ ′, cst

′) (in our notation), it is extended straight
line primed intrinsic affine spacetime coordinates,
∅x̃ ′ and ∅cs∅t̃ ′, of the particle’s primed intrinsic
affine frame (∅x̃ ′,∅cs∅t̃ ′) that are rotated
relative to their projective extended straight line
unprimed intrinsic affine spacetime coordinates,
∅x̃ and ∅cs∅t̃, of the particle’s unprimed intrinsic
affine frame (∅x̃,∅cs∅t̃). It is consequently
extended straight line primed intrinsic affine
coordinates, ∅x̃ ′ and ∅cs∅t̃ ′, that transform into
extended straight line unprimed intrinsic affine
coordinates, ∅x̃ and ∅cs∅t̃, in intrinsic Lorentz
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transformation (∅LT), in the context of intrinsic
special theory of relativity (∅SR).

It is extended straight line primed affine
coordinates, cst̃ ′, x̃ ′, ỹ ′ and z̃ ′, of the particle’s
primed affine frame (cst̃

′, x̃ ′, ỹ ′, z̃ ′ embedded in
the flat four-dimensional proper metric spacetime
(Σ ′, cst

′) that transform into extended straight
line special-relativistic (or unprimed) affine
spacetime coordinates, cst̃, x̃, ỹ and z̃, of the
particle’s unprimed affine frame (cst̃, x̃, ỹ, z̃),
which is also embedded in the unchanged
flat four-dimensional proper metric spacetime
(Σ ′, cst

′), in Lorentz transformation (LT) in the
context of the special theory of relativity (SR).

The special theory of relativity, as an isolated
phenomenon, cannot transform the extended
flat proper metric spacetime (Σ ′, cst

′) on which
it operates into extended flat relativistic metric
spacetime (Σ, cst), because SR involves the
transformation of extended straight line affine
spacetime coordinates with no metrical quality.
Or because the spacetime geometry associated
with SR is affine spacetime geometry.

A recall of the discussion of metric and
affine spacetimes in sub-section 4.4 of [1] is
appropriate here. The literal definitions of metric
spacetime as ponderable, that is, observable and
measurable spacetime and of affine spacetime
as non-ponderable, that is, non-observable and
non-measurable spacetime, are evoked in that
sub-section. Further more, it is mentioned in
that sub-section that the proper metric spacetime
(Σ′, ct′) is the physical proper four-dimensional
spacetime, which is flat with constant Lorentzian
metric tensor (in the classical gravitational field).
The rest masses of particles and bodies are
contained in the proper metric 3-space Σ′ (with
Euclidean metric tensor), and they move on the
flat four-dimensional proper metric spacetime,
with the assumed absence of strong gravitational
field. It is also mentioned in that sub-section that
affine spacetime are mere mathematical entities
without physical (or metrical) quality, used to
identify the positions and to track the motions of
the masses of material particles and bodies (as
mass-points), relative to specified origins on the
flat proper metric spacetime (Σ′, ct′). The path
(i.e. the loci of points) of a material point through
a metric spacetime are affine coordinates without
metrical quality.

The flat four-dimensional intrinsic spacetime
(∅Σ′,∅c∅t′) with respect to intrinsic observers in
it in Fig. 3b, is ponderable, that is, it is observable
and measurable to intrinsic observers in it. The
(∅Σ′,∅c∅t′) is consequently a metric spacetime
with respect to the intrinsic observers in it, while
it is an intrinsic metric spacetime with respect
to observers in the proper metric spacetime
(Σ′, ct′).

The primed affine coordinates, x̃ ′, ỹ ′, z̃ ′ and
cs t̃

′, of the particle’s primed affine frame and the
unprimed affine coordinates, x̃, ỹ, z̃ and cst̃, of
the particle’s unprimed affine frame in the context
of SR, are with no metrical quality and both
are embedded in the flat proper (or classical)
metric spacetime (Σ ′, cst

′), but knowing that the
particle’s primed affine frame (cst̃

′, x̃ ′, ỹ ′, z̃ ′)
no longer exists, having transformed into the
particle’s unprimed affine frame (cs t̃ , x̃ , ỹ , z̃),
which is now embedded in (Σ ′, cst

′) in the
context of SR, in the new geometries of Fig. 8a
(reproduced as Fig. 4 of this paper) and it
complementary diagram and their inverse of
[1]. Figure 8a of that paper, reproduced as
Fig. 4 of this paper, is adequate to illustrate
the embedding of the affine coordinates, x̃, ỹ, z̃
and cst̃ (represented by (Σ̃′, cst̃), in the metric
spacetime (Σ ′, cst

′).

It is strong gravity (gravity being a metric
phenomenon) that can transform the extended
flat four-dimensional proper (or classical) metric
spacetime (with prime label) (Σ ′, cst

′) into
extended four-dimensional relativistic metric
spacetime (Σ, cst) (without prime label), where
(Σ, cst) is known to be curved in the gravitational
field in the context of the general theory of
relativity (GR). The rest massm0 of a test particle
on the flat proper (or classical) metric spacetime
(Σ ′, cst

′) is also known to transform into the
inertial mass m on the curved metric spacetime
(Σ, cst) in the context of GR, where m is known
to be trivially related to m0 as, m = m0, by virtue
of the Einstein principle of equivalence (EPE), as
noted in [11].

However our interest in the previous papers
[1, 2, 3] and this paper, is not in the metric
phenomenon of gravity, but in the special
theory of relativity (with affine spacetime
geometry), considered to be isolated from
strong gravitational field. We have assumed
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the absence of strong gravitational field by
restricting to the extended flat four-dimensional
proper (or classical) metric spacetime (Σ ′, cst

′)
of Newtonian gravitation, as the underlying metric
spacetime (or ‘platform’) on which SR in affine
spacetime operates in the previous three papers
and this paper.

The transformation of the flat proper metric
spacetime (Σ ′, cst

′) into relativistic metric
spacetime (Σ, cst), in strong gravitational fields
in the present four-world picture, in which four-
dimensional metric spacetime is underlay by two-
dimensional intrinsic metric spacetime in each
of the four symmetrical universes, is worthy of
investigation elsewhere.

5 CONCLUSION

The co-existence of four symmetrical universes,
identified as positive (or our) universe, negative
universe, positive time-universe and negative
time-universe, in different four-dimensional
spacetimes, is derived in this and three previous
papers. A two-dimensional intrinsic spacetime
that underlies the four-dimensional spacetime in
each universe is also isolated in the papers. The
four universes exhibit perfect symmetry of natural
laws and perfect symmetry of states. This means
that the same natural laws take on identical
forms in the four universes. It also means that
material particles and bodies are symmetrically
distributed in spacetimes in the four universes
and all members of every quartet of symmetry-
partner particles or bodies in the four universes
have identical magnitudes of masses, identical
shapes and identical sizes and are involved in
symmetrical motions in their respective universes
at all times.

The four universes constitute four-world
background for the special theory of relativity
in each universe, as demonstrated in this and the
previous papers. The possibility of subsuming the
theory of gravitation into the four-world picture is
the next natural step. The investigation of the
possibility of the coexistence of larger number of
symmetrical universes in different spacetimes
than four isolated already is also
recommended.
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