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A three-year field experiment was conducted to analyze the effects of straw enrichment and deep incorporation on the humus
composition and the structure of humic acid (HA) in black soil. *e differences in the HA structure between different straw
returning methods were detected by three-dimensional fluorescence spectroscopy and 13C NMR technology. *e purpose of this
paper is to provide a theoretical basis and data support for improving the straw returning system. Four different treatments,
including no straw applied (CK), straw mulching (SCR), straw deep ploughing (MBR), and straw enrichment and deep in-
corporation (SEDI: harvested the corn straw from four rows together with a finger-plate rake and then crushed and buried them in
one row in the 20∼40 cm deep level in the subsoil with a wind-driven input cylindrical plough), were used in this study. Our results
showed that compared to CK treatment, SEDI significantly increased the contents of organic carbon (SOC), soil humic acid
carbon (HAC), fulvic acid carbon (FAC), and humin C content (HM-C) in the subsurface soil layer by 27.47%, 34.33%, 19.66%,
and 31.49%, respectively. Among all the straw returning treatments, SEDI treatment had the most significant effect in increasing
the contents of HEC, HAC, and FAC. Straw returning not only reduced the degree of condensation and oxidation of the HA
structure but also increased the proportion of alkyl C and enhanced the hydrophobicity of the HA structure in subsurface soil.
Moreover, SEDI treatment significantly increased the proportion of aliphatic C/aromatic C of the HA structure in subsurface soil
and improved the aliphatic property of HA, which had a significant effect on the HA structure compared to other treatments.

1. Introduction

In recent years, due to long-term intensive agricultural
production and soil erosion, the soil organic content and
humus quality of black soil have decreased significantly in
Northeast China, resulting in shallower soil layers [1] and
poor cultivability of land. Moreover, corn straw incorpo-
ration was effective in increasing soil organic carbon [2] and
humus C content [3], deepening the degree of soil humi-
fication [4], and improving the HA structure. Chen et al.
showed that straw returning increases the aliphatic group of
HA molecular structure, reduces the degree of condensation
and oxidation of HA structure, and makes HA structure
more lipidic and simple [5].

Soil organic carbon (SOC) pool is the largest terrestrial
carbon pool, and 70–80% of SOC is composed of humus [6].

Humic acid (HA) is the main component of humus [7].
Furthermore, the composition, structure, and properties of
HA were related to the fertilization characteristics of the soil.
Returning straw to the field can improve soil fertility and
increase the content of soil organic matter. Different straw
returning methods have different effects on the composition
of soil humus and the structure of HA. Studies have shown
that straw mulching is beneficial to the accumulation of
organic carbon and humic substance C content [8] and the
enhancement of functional groups such as aliphatic, hy-
droxyl, methoxy, and carboxyl groups on the surface soil [9],
but straw mulching also affects seedling emergence and
makes tillage difficult [10]. A new straw returning method
had been developed, namely, straw enrichment and deep
incorporation (SEDI), consisting in (1) raking the corn
stalk in the field together into rows at a ratio of 4 :1 with a
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finger-plate rake; (2) crushing the corn straw and burying it
into subsoil, 20∼40 cm deep along designated strips with a
wind-driven input cylindrical plough; (3) sowing seeds into
the strips with no straw buried in between the strips with
straw buried in a normal way with a nontillage seeder, to
realize separation of the seeded strips (narrow rows) from
the strips (wide rows) with straw buried in a wide-and-
narrow row alternating cultivation mode. Zuber et al.
showed that straw deep ploughing has a better effect on the
accumulation of soil organic matter than that of straw
mulching [11] and also increases the organic carbon content
of HE and HA [12]. Straw deep incorporation can also sig-
nificantly increase the content of soil subsurface active organic
carbon [13], deepen the degree of soil humification [14],
reduce the degree of HA structure condensation and oxi-
dation, and increase the content of aliphatic chain hydro-
carbons and aromatic carbon. Zhang et al. have shown that
straw deep incorporation accumulates soil organic carbon
and humus component carbon content in different soil layers
and improved the aromaticity and hydrophobicity of HA
molecules [15]. Al et al. compared the changes in the structure
of soil humic acid after applying crop straw, jujube leaf, and
animal manure by solid-state-13C NMR. *eir results indi-
cated that crop straw has the highest aliphatic content and the
strongest aliphatic content [16]. Chen Xi et al. showed that
straw returning could increase the relative content of alkoxy
carbon in soil organic carbon through 13CNMR research [17].

Nowadays, three-dimensional fluorescence spectroscopy
and 13C NMR techniques were used to study the effects of
straw returning on humic composition and HA structure.
Previous research mainly focused on straw mulching and
straw shallow application on the accumulation of soil or-
ganic carbon and humus C in the surface layer [8]. However,
the effects of straw enrichment and deep incorporation
(SEDI) on soil humus composition and HA structure are yet
poorly understood, along with the differences of HA
structure between SEDI and other returning methods. To
address the issue, we conducted a 3-year field experiment to
(i) determine the SOC content, (ii) characterize humus
composition and C content, and (iii) compare the changes of
HA structure from different return methods by three-di-
mensional fluorescence spectroscopy and 13C CPMAS NMR
technology. In order to provide a theoretical basis and data
support for the improvement of straw returning system, this
paper focused on discussing the impact of the hydrophilicity
and hydrophobicity of the HA structure on soil stability.

2. Materials and Methods

2.1. Experimental Site. *e experiment was located at the
Experimental Station of Agricultural Technology Extension
Center in Jiutai District, Changchun City, Jilin Province
(44°08′N, 125°50′E). *e experimental soil was classified as
Argiudolls. *e basic properties of the sampled soil are
shown in Table 1.

2.2. Experimental Design. *e experiment adopted wide-
and-narrow row planting. *e ridge height was 12 cm, and

the row spacing was 40 cm. *e planting density was 65000/
hm2. Four treatments were set randomly with three repli-
cations. CK: no straw was applied; SCR: corn straw was
evenly placed on the soil surface; MBR: corn straw was
evenly placed on the soil surface, and straw deep turning and
returning to the field to 25–30 cm soil layer; SEDI: the corn
straw was harvested from four rows together with a finger-
plate rake and then crushed and buried them in one row in
the 20∼40 cm deep level in the subsoil with a wind-driven
input cylindrical plough. *e corn straw was mechanically
crushed in all three corn straw treatments. *e experiment
selected field planting; each treatment area was 1334m2.
Each plot had the same fertilizer application rate:
200 kg·N·ha−1, 100 kg·k·ha−1, and 100 kg·Pha−1.

2.3. Soil Sampling and Analysis. Soil samples were collected
after the maize harvest in November 2019. For each treat-
ment, the soil samples were collected from three points in
each plot replicate. *e sampling depth was 0–20 cm and
20–40 cm. Each soil sample was air-dried and passed
through a 2mm sieve to remove plant residues for extracting
soil HA.

2.4. Laboratory Analysis. SOC was determined using the
K2Cr2O7 external heating method. Alkalytic N was mea-
sured using the alkali diffusion method; available P was
measured using sodium bicarbonate-molybdenum anti-
mony colorimetry; available K was measured using a flame
photometer, which was measured by a pH meter [18].

Humus composition was analyzed following the Inter-
national Humic Substances Society method [19]. Briefly, 5 g
of soil sample was sequentially extracted with 30mL of
distilled water, then with 30mL of 0.1N mixed alkali so-
lution (NaOH+Na4P2O7) under continuous shaking at
70 °C for one hour. *e supernatant was humic extractable
(HE) substance. 30mL HE was acidified to pH 1 to separate
HA from humic fulvic (FA). *e precipitation was retained
as HA and FA remained in the solution. HA was redissolved
with 0.05 mol·L−1NaOH.

HA isolation and purification were processed using the
procedure described by the International Humic Substances
Society procedure described by Kuwatsuka et al. [20].
Briefly, 50 g of soil sample was decalcified with HCl; then,
residues were extracted by NaOH solution and allowed to
stand overnight. *e supernatant was soaked in a mixture of
HF and HCL solution to remove ash, dialysed to electro-
dialysis, and freeze-dried afterwards.

2.5. Characterization of HA. HA element composition, such
as C, H, N, and O, was determined by a Vario EL III ele-
mental analyzer. *e fluorescence spectra were obtained at a
concentration of 100mgL−1 (pH was adjusted to 8.0 with
0.05M NaOH). *e EEM spectra were recorded with
emission wavelength between 300 and 600 nm, while the
excitation wavelength was increased sequentially from 250
to 550 nm.*e emission-excitation slit was fixed at the 5 nm
bandwidth and the scanning speed was set at
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12,000 nmmin−1. *e solid-state 13C NMR spectra of soil
samples were obtained on an AVANCE III 400 WB spec-
trometer at 100.6MHz with a spinning rate of 8 kHz, an
acquisition time of 34ms, a recycle time of 5 s, and a contact
time of 2ms. Chemical shift values were externally refer-
enced to the methylene resonance of the adamantane
standard at 38.4 ppm. Semiquantification was performed by
integration using Mestre Nova 14.0 software [21].

2.6. Statistical Analysis. Analysis of variance was performed
using SPSS 21.0 software. Statistical significance differences
among corn straw returning mode means were evaluated
using the least significant difference test at a level of p< 0.05.

3. Results

3.1. SOC and Humic C. Data on the C contents of soil for
each treatment are presented in Figure 1. Compared with CK
treatment, SCR, MBR, and SEDI treatments increased
SOC content in the surface soil layer by 12.65%, 10.07%,
and 8.38%, respectively. In the 20–40 cm soil depth, the
SOC contents increased in the following trend:
SEDI>MBR> SCR>CK. All corn straw treatments in-
creased SOC content in the subsurface soil layer by 2.89%,
18.29%, and 27.47%. *us, it could be seen that for the
different straw returning treatments, the SEDI had a more
significant cumulative effect on the subsurface organic
carbon content.

Data on the humic fractions for each treatment are
presented in Table 2. For the humic fractions, SEDI treatment
significantly increased the content of humic fraction (HEC) in
the 20–40 cm, soil humic acid carbon (HAC), fulvic acid
carbon (FAC), and humin C content (HM-C) by 34.33%,
19.66%, and 31.49%, respectively, compared with CK. PQ
value is the proportion of HA in humic substances, which can
reflect the degree of humification of SOC. Compared with
CK, the treatment of straw returning to the field increased the
PQ value of the soil to varying degrees. *e SEDI treatment
increased the PQ value of subsurface soil the most, which
increased from 62.71% to 65.39% compared with CK.

3.2. Elemental Composition of HA. It can be seen from
Table 3 that the elements of HA are mainly composed of C
and O, in which the C content ranges from 482.1 g kg−1 to
512.9 g kg−1, and the O content ranges from 422.5 g kg−1 to
479 g kg−1. After corn straw returning, the content of C, H,
and N in HA increased, while the content of O decreased.
Among all the treatments, the SEDI treatment significantly
increased the C, H, and N contents in the 20–40 cm depth. In
the topsoil, the H/C ratio increased in the trend of
SCR>MBR> SEDI>CK, while the O/C ratio decreased
in the trend of CK> SEDI>MBR> SCR. In the subsoil, the

H/C ratio increased in the trend of SEDI>MBR> SCR>CK,
while the O/C ratio decreased in the trend of
CK> SCR>MBR> SEDI.

3.3. -ree-Dimensional Fluorescence EEM Spectra of HA.
*e three-dimensional fluorescence spectroscopy of straw
returning modes is displayed in Figures 2 and 3. All of the
EEM fluorescence spectra of HA exhibited three fluo-
rophores (peaks A–C).*e three fluorophores were centered
at the Em/Ex wavelength of 430–500/470–550 nm for peak
A, 340–370/490–550 nm for peak B, and 270–340/
460–550 nm for peak C, which may be related with the
amount of humic substances. Among all the treatments, the
highest fluorescence intensities of peaks A-C were recorded
under SEDI in the 20–40 cm, and the lowest under CK in the
0–20 cm. Generally, higher fluorescence intensity indicates
greater proportions of hydroxyl, alkoxyl, and methoxyl [22].
*e results showed that SEDI treatment had a slight increase
in FI as compared with CK, implying that straw enrichment
and deep incorporation were more conducive to improving
the straw decomposition and soil HA formation than other
treatments (Table 4).

3.4. 13CNMRSpectra ofHA. *e 13C NMR spectra of HA for
each treatment are reported in Figure 4.*e spectrum can be
divided into 4 main resonance regions, namely, alkyl C
(0∼50 ppm), alkoxy C (50∼110 ppm), aromatic C
(110∼160 ppm), and carboxyl C (160∼200 ppm) [23]. *e
peaks at 30 ppm in the alkyl C region were assigned as-CH2-.
*e peak at 55∼56 ppm in the O-alkyl C region was assigned
as methoxyl C in lignin. *e peaks at 70∼73 ppm and
104∼105 ppm were carbohydrate C and hydrogen peroxide
in polysaccharide, respectively. *e peak at 128∼130 ppm in
the aromatic C region was ascribed to aryl C. *e peak at

b
c

a

c
a ba

a

0

2

4

6

8

10

12

14

16

0~20 20~40
Sampling depth (cm)

CK
SCR

MBR
SEDI

SO
C 

(g
/k

g)
Figure 1: Effect of different treatments of corn straw on SOC.

Table 1: Basic properties of the tested soil.

Depth (cm) Organic matter (g/kg) Total N (mg/kg) Available P (mg/kg) Available K (mg/kg) pH
0∼20 12.20 78.73 95.86 235.80 6.6
20∼40 12.05 76.52 70.17 204.75 6.3
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171∼173 ppm in the carbonyl C region was indicative of
carboxylic acid, amide, and ester [24]. *e shape of the
spectrum of all treatments of HA shows similar tendencies;
however, the absorption peak intensity is significantly dif-
ferent. It indicated that although HA has a similar structure,
the HA structure changed after straw returning.

*e relative intensity of the HA groups for different
treatment is shown in Table 5. Compared with the CK
treatment, all the straw returning treatments increased the
alkyl C, whereas the O-alkyl C decreased. SCR, MBR, and
SEDI treatments were 0.77%, 4.39%, and 16.80% higher than
CK treatment in alkyl C and 3.11%, 5.26%, and 8.24% lower
in O-alkyl C. *ese results showed that corn straw return
was disadvantageous of accumulation for O-alkyl C; nev-
ertheless, SEDI was beneficial to the formation of alkyl
C. Moreover, SEDI treatments decreased aromatic C con-
tents of soil HA by 1.72%. Furthermore, compared with CK,
SEDI treatments had no significant difference for carbonyl
C; SCR treatment was 2.10% higher than CK treatment.
However, MBR treatment decreased by 1.72%. For the ratio
of alkyl/O-alkyl and hydrophobic/hydrophilic, all the corn
straw return treatments were higher than CK, and SEDI had
a higher increasing rate (27.28% and 5.87%). *e higher
aliphatic C/aromatic C ratio indicated that HA is more
aliphatic, and SEDI is more beneficial to improve the straw
decomposition andHA formation than the other treatments.

4. Discussion

4.1. Corn Straw Returning Increased SOC and Humus C
Contents. Soil stores most of the ecosystem carbon in the

form of organic matter [25], and humus is the most
abundant and important component of soil organic matter
[7]. *us, humus is a significant indicator to evaluate soil
fertility [26]. Zhang et al. [27] observed that straw returning
could increase the content of SOC and humus and improve
soil fertility.

After three years, corn straw returning significantly
increased SOC, HAC, FA-C, andHM-C contents in both soil
depths (Table 2), consistent with previous studies [28–30].
Straw contains carbon, nitrogen, phosphorus, potassium,
other nutrients [31] and a certain number of humus frac-
tions [1]. *erefore, its application increases the content of
humus C through stem and root exudates [32], which re-
duces the direct mineralization of soil organic carbon
content. Lhadi et al. reported that the degradation of corn
straw leads to the formation of humus [33]. *e humus C
persisted in the soil for a certain time, and then increased the
soil carbon sequestration and humus composition content.
It led to the increase of the HA/FA ratio, which indicated the
humification degree of soil was deepened [3]. Among all the
treatments, SEDI was more conductive to increasing SOC,
HAC, and FA-C contents in the subsoil (Table 2). Previous
studies have shown that the organic carbon content of MBR
is higher than that of SCR in the subsoil [34], due to the fact
that the corn straw could not be fully mixed with soil under
SCR treatment, and decreases its decomposition rate by soil
microorganisms [35]. Compared with MBR, the process of
deep burying of straw under the SEDI treatment disturbs the
subsurface layer of the soil and stimulates microbial activity
[36], increasing their metabolic rate [22] and increasing the
soil easily oxidizable carbon [37]. *e latter processes

Table 2: Effect of different treatments of corn straw on humic substances in black soil.

Depth (cm) Treatment HA-C FA-C HM-C PQ (%)

0∼20

CK 3.19± 0.10d 1.89± 0.10b 5.31± 0.16c 62.78± 0.01b
SCR 4.24± 0.80a 2.22± 0.08a 6.49± 0.46a 65.67± 0.01a
MBR 3.96± 0.18b 2.20± 0.13a 6.16± 0.12ab 64.25± 0.02a
SEDI 3.68± 0.12c 2.08± 0.14a 5.85± 0.25b 63.85± 0.02a

20∼40

CK 3.00± 0.16c 1.78± 0.15a 5.05± 0.13c 62.71± 0.03a
SCR 3.22± 0.22bc 1.86± 0.20a 5.80± 0.19b 63.41± 0.04a
MBR 3.60± 0.10b 2.03± 0.20a 6.01± 0.21b 63.90± 0.04a
SEDI 4.03± 0.14a 2.13± 0.20a 6.64± 0.38a 65.39± 0.03a

Note. CK: no straw application; SCR: straw mulching; MBR: straw deep ploughing; SEDI: straw enrichment and deep incorporation. *ere were significant
differences between different letters representing different treatments (p< 0.05).

Table 3: Effect of straw returning to the field on HA element composition in soil.

Depth (cm) Treatment
Element content (g·kg−1)

O/C H/C
C H N O

0∼20

CK 487.3± 0.8d 44.99± 0.30d 22.71± 0.28d 477.0± 0.8a 0.734± 0.002a 1.108± 0.009c
SCR 512.9± 0.7a 49.54± 0.06a 27.88± 0.10a 422.5± 0.5d 0.618± 0.001d 1.159± 0.001b
MBR 495.1± 0.9b 47.97± 0.10b 25.70± 0.12b 435.2± 0.9c 0646± 0.001c 1.140± 0.002a
SEDI 491.9± 0.8c 46.43± 0.08c 23.42± 0.09c 467.5± 0.4b 0.713± 0001b 1.133± 0.002a

20∼40

CK 482.1± 0.9d 43.21± 0.90d 21.52± 0.10c 479.0± 0.9a 0.745± 0.001a 1.076± 0.024c
SCR 486.8± 0.5c 44.56± 0.08c 22.90± 0.66b 475.0± 0.7b 0.732± 0.002b 1.099± 0.001bc
MBR 488.7± 0.6b 45.5± 0.17b 23.20± 0.44b 453.1± 0.9c 0.695± 0.001c 1.117± 0.005b
SEDI 501.2± 0.7a 48.04± 0.16a 25.12± 0.09a 429.2± 0.8d 0.642± 0.001d 1.150± 0.002a

Note. CK: no straw application; SCR: straw mulching; MBR: straw deep ploughing; SEDI: straw enrichment and deep incorporation. *ere were significant
differences between different letters representing different treatments (p< 0.05).
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increase soil carbon sources. Straw returning to the field can
promote a significant increase in the carbon content of HA,
FA, and HM, while the PQ value increases slightly, but the
change is not significant, indicating that the degree of soil
maturation and fertility state of the soil transforms in the
appropriate direction after straw returning [15].

4.2. Corn Straw Returning Decreased the Oxidation Degree
and Condensation Degree of HA. *e results showed that
corn straw returning increased the H/Cmolar ratio of HA
and decreased the O/Cmolar ratio of HA (Table 3), which
indicated that straw returning reduced the condensation
degree and oxidation degree of HA structure and simplified
the structure of HA. Chen et al. reported that the con-
densation degree and oxidation degree of HA structure in
soil decreased after straw application [5], due to the

promotion of microbial activity after straw application, and
during the process of microbial metabolic decomposition,
HA with complex structure in soil was decomposed, which
reduced the stability of HA structure [38]. In addition, the
number of newly formed HA oxygen-containing functional
groups in the process of straw decomposition was less [39],
which reduced the degree of oxidation of HA and made the
structure of HA be simpler and younger.

4.3. Corn Straw Returning Increased the Hydrophobicity of
HA. Fluorescence spectroscopy can be used to measure the
structure and properties of compounds and determine the
structure of functional groups of humus [40, 41]. Our re-
search has shown that the hydrophobicity of HA structure of
the soil was enhanced after the straw returning. In our study,
straw application compared with CK increased the
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Figure 2: Fluorescence spectra of HA in different maize returningmethods on topsoil.Note.CK: no straw application; SCR: strawmulching;
MBR: straw deep ploughing; SEDI: straw enrichment and deep incorporation. (a) Topsoil: CK. (b) Topsoil: SCR. (c) Topsoil: MBR.
(d) Topsoil: SEDI.
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intensities of peaks A to C, which indicates that the ap-
plication of corn straw contains more electron-donating
substituents such as hydroxyl, methoxy, and amino [42], and

they can increase the fluorescence intensity by increasing the
transition probability between the singlet state and the
ground state [43]. Gao et al. have shown that straw returning
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Figure 3: Fluorescence spectra of HA in different maize returning methods on subsoil. Note. CK: no straw application; SCR: straw
mulching; MBR: straw deep ploughing; SEDI: straw enrichment and deep incorporation. (a) Subsoil: CK. (b) Subsoil: SCR. (c) Subsoil: MBR.
(d) Subsoil: SEDI.

Table 4: Excitation (Ex)/emission (Em) wavelength and fluorescence intensity (FI) of peaks in humic acid after different corn straw return
modes.

Soil depth (cm) Treatment
Peak A Peak B Peak C

Ex/Em Intensity (a.u.) Ex/Em Intensity (a.u.) Ex/Em Intensity (a.u.)

0∼20

CK 460/524 115.02 370/504 105.00 290/503 117.84
SCR 460/531 154.52 370/523 136.33 290/508 153.54
MBR 460/523 149.63 370/498 135.81 290/521 141.71
SEDI 460/528 130.56 370/495 117.72 290/523 129.32

20∼40

CK 460/528 112.86 370/511 112.61 290/515 114.30
SCR 460/529 125.33 370/493 114.19 290/520 120.14
MBR 460/537 144.73 370/505.6 126.12 300/522 135.99
SEDI 460/535 172.34 370/506 143.47 290/509 164.00

Note. CK: no straw application; SCR: straw mulching; MBR: straw deep ploughing; SEDI: straw enrichment and deep incorporation.
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to the field can improve the soil and found that the soil had a
higher content of alkoxy carbon and methyl carbon [22, 44],
while methyl C was converted from lignin polymerization
[45] and was a hydrophobic substance. *erefore, returning
straw enhances the hydrophobicity of HA.

Considering the complex peak assignment in the ele-
mental analysis and fluorescence spectroscopy of HA, we
evaluated the HA structural characteristics further using the
solid-state 13C CPMAS NMR technique. Different ways of
returning straw to the field led to different changes in the
structure of functional groups, mainly manifested as changes
in aromatic carbon, alkyl carbon, alkoxy carbon, and car-
boxyl carbon. Alkyl C (aliphatic compound, methyl C, etc.)
is a carbon compound difficult to degrade in soil. *us, the
application of straw results in the increase of alkyl C
community and microbial structure [46]. *e decomposi-
tion of O-alkyl C is mainly due to the fact that cellulose and
hemicellulose in plant residues are easily metabolized by
microorganisms to utilize organic carbon functional groups.
*e relative content of alkoxy C slightly increases after straw
returning, while during the rapid phase of corn stalk
decomposing, the O-alkyl C in the plant residues will be
quickly lost into the soil, resulting in a relatively low content
of alkoxy C [47]. Aromatic C (mainly from tannin and
lignin) is relatively stable. *e decrease of the structure in
SEDI may be due to the aerobic degradation of lignin by
white rot and brown rot fungi through dehydration,
demethylation, or cleavage of β-O-4 bonds [48]. Carboxyl

carbons mainly come from carboxylic acids, amides, and
esters [49]. *e increase in carboxyl C under SCR treatment
might be related to the oxidation of lignin side chains and
polysaccharides [39]. *e hydrophobicity of HA was de-
termined by the ratio of hydrophobic C (aromatic C and
alkyl C) to hydrophilic C (alkoxy C and carboxyl C). *e
higher the ratio, the stronger the hydrophobicity and the
stronger the stability of soil HA [50].

4.4. Effects of Different Returning Methods on the Soil HA
Structure. Studies have shown that hydrophobicity was
meaningful for maintaining the stability of soil organic
carbon [50]. Our results showed that straw return enhances
the hydrophobicity of HA structure, and SEDI treatment
was the most effective (Table 5). Studies have shown that
the ratio of high alkyl C and low aromatic C makes the soil
organic matter younger [51]. *is implies that HA is
younger under SEDI treatment. *e higher aliphatic C/
aromatic C ratio showed (Table 5) that HA was highly
aliphatic under SEDI treatment, which made the structure
of HA simpler. On the contrary, the aromaticity was en-
hanced under the MBR and SCR treatment, demonstrating
a more complex HA structure. *erefore, straw buried in
the subsurface of soil increases the soil oxidizable carbon,
stimulates the microbial activity, speeds up the metabolic
rate of microorganisms, and promotes the decomposition
of HA.

Carboxy C Aromatic C O–Alkyl C Alkyl C

220 200 180 160 140 120 100 80 60 40 20 0
Chemical shi� (ppm)

SEDT

MBR

SCR

CK

Figure 4: 13C CPMAS NMR spectra of HA in different maize returning methods. Note. CK: no straw application; SCR: straw mulching;
MBR: straw deep ploughing; SEDI: straw enrichment and deep incorporation. *ere were significant differences between different letters
representing different treatments (p< 0.05).

Table 5: Relative intensity (%) of different chemical shift intervals from 13C CPMAS NMR spectra of HA examined.

Treatment Carbonyl C (%)
(160–230 ppm)

Aromatic C (%)
(110–160 ppm)

O-Alkyl C (%)
(50–110 ppm)

Alkyl C (%)
(0–50 ppm)

Alkyl C/
O-alkyl C

Aliphatic C/
aromatic C

Hydrophobic C/
hydrophilic C

CK 18.58 53.98 14.45 12.98 0.898 0.508 2.027
SCR 18.97 53.96 14.00 13.08 0.934 0.502 2.034
MBR 18.26 54.49 13.69 13.55 0.99 0.500 2.129
SEDI 18.53 53.05 13.26 15.16 1.143 0.536 2.146
Note. CK: no straw application; SCR: straw mulching; MBR: straw deep ploughing; SEDI: straw enrichment and deep incorporation.
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5. Conclusion

In this 3-year study, 13C NMR spectroscopy and three-di-
mensional fluorescence spectroscopy were adapted to ana-
lyze the structure of soil HA after straw returning. *e study
concludes the following:

(i) Adding corn straw into soil significantly increased
SOC content and humus composition. Compared to
all the rest treatments, SEDI accumulated the largest
quantities of SOC and C contents of humic acid,
especially in the subsurface soil layer.

(ii) Among the four treatments, SEDI was the most
conducive way to enhance the hydrophobicity of the
HA structure, which made it more stable, and im-
prove the soil carbon sequestration capacity.
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