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To meet the growing demand for complementary and alternative treatment for malaria, manufacturers produce several antimalarial
herbal medicinal products. Herbal medicinal products regulation is difficult due to their complex chemical nature, requiring cum-
bersome, expensive, and time-consuming methods of analysis. *e aim of this study was to develop a simple spectroscopic method
together with a chemometric model for the classification and the identification of expired liquid antimalarial herbal medicinal products.
Principal component analysis model was successfully used to distinguish between different herbal medicinal products and identify
expired products. Principal component analysis showed a clear class separation between all five herbal medicinal products (HMP)
studied, with explained variance for first and second principal components as 37.51% and 26.38%, respectively, while the third principal
component had 18.74%. Support vectormachine classification gave specificity and accuracy of 1.00 (100%) for training set data for all the
products. *e validation set HMP1, HMP2, and HMP3 had sensitivity, specificity, and accuracy of 1.00. HMP4 and HMP5 had
sensitivity and specificity of 0.90 and 1.00, respectively, and an accuracy of 0.98.*e support vector machine classification and principal
component analysismodels were successfully used to identify expired herbalmedicinal products.*is strategy can be used for rapid field
detection of expired liquid antimalarial herbal medicinal products.

1. Introduction

*e worldwide mortality attributed to malaria in 2019 was
409,000 out of which 384,000 occurred in Africa, with most
of them being children and pregnant women [1]. *ese
mortality cases in Africa represent over 93% of all malaria-
related deaths worldwide. Of the 87 malaria endemic regions
in the world, 28 African countries and India accounted for
95% of malaria cases reported globally [1]. Over the years,
concerns have risen about the effectiveness and safety of
orthodox antimalarial drugs, coupled with the development
of resistance to drugs used in the treatment of malaria [2].
Artemisinin combination therapy was introduced to reduce

the rate of development of resistance. However, the asso-
ciated side effects and adverse drug reactions have made it
unattractive for some patients [3], as well as cost of treat-
ment, treatment failures, and accessibility.

In such situations, plant medicines have provided a
viable alternative to orthodox medicines for the treatment of
malaria. In Ghana, plant medicines remain a major source of
antimalaria therapy, as a large number of Ghanaians are
observed to patronize herbal antimalaria remedies. Such
preference stems from the lower costs of products, perceived
better efficacy and reduced side effects, and acceptability
based on peer recommendation. Treatment outcomes from
the use of these herbal remedies have been positive in a
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number of cases because medicinal plants have been sources
of many bioactive compounds including natural scaffolds for
antimalarial drugs such as quinine and artemisinin [4, 5].
*ese plant medicines may circumvent the challenges of
parasite resistance and toxicity by the synergistic activity of
the several constituent secondary metabolites [6].

Plant medicines are normally formulated as herbal me-
dicinal products (HMPs) with optimum pH and minimal
toxicity due to internal buffering effect [5] and relatively low
concentration of constituent phytochemicals, respectively.
Currently, the prevalence of use of HMPs in Ghana is about
76% [7]. Considering the debilitating nature of malaria and the
potential for development of organ and neurological compli-
cations in severe cases, there is the need for surveillance and
continuous quality monitoring of HMPs to safeguard the in-
tegrity of the products in order to safeguard the general public.
However, the efficient quality monitoring of HMPs still re-
mains a major challenge. In the case of orthodox medicines, an
assay can be performed to determine the levels of active in-
gredients and other impurities that may be present. On the
other hand, HMPs usually have several phytochemical con-
stituents that nearly make it impossible to identify all the
bioactive compounds and accordingly have them quantified,
more especially when the products are polyherbal. In spite of
this, variations in the levels of phytoconstituents in plant
materials collected from different sources and at different times
are a major concern for the monitoring of HMPs for content
uniformity, especially in situations where the products are used
for the treatment of infectious diseases such as malaria. It is
already known that the levels of plant secondary metabolites
are influenced by factors such as growth conditions, time and
method of harvesting, and storage condition, as well as the
geographical location [8–11]. Since at themoment a lot of these
factors influence the levels of phytoconstituents in medicinal
plants, and themanufacturing practices are not standardized, it
becomes important in the interest of the HMP patrons to
develop simple, cost-effective, and efficient system to assure the
quality of HMPs.

In view of the difficulty associated with the development
of assay methods for HMPs because of the myriad of sec-
ondary metabolites, the approach by the Food and Drugs
Authority, Ghana, to approve and register HMPs has mainly
focused on microbial load, toxicity, pH, and some physi-
cochemical parameters such as ash value and acid value. It is
however necessary to have a technique where the protocol
involves measurement of some phytochemical components
of the HMPs. Some of the challenges associated with such
desired methods in resource constrained environments are
the cost of equipment, accessories, and maintenance. In
addition, the methods would be expected to target detection
and quantification of almost all the phytochemical com-
ponents of the polyherbal HMPs or selected markers [12].
*ese methods usually involve techniques such as high-
performance liquid chromatography (HPLC), gas chroma-
tography-mass spectrometry (GC-MS), and capillary elec-
trophoresis (CE) which are difficult to find in countries such
as Ghana for routine chemical quality monitoring of HMPs.
Besides the instrumental challenges are tedious sample

preparations with high volume of solvent and solvent-
wasting separation methods [12, 13].

*e ultraviolet-visible (UV-Vis) spectroscopy as a
simple, cost-effective, and nondestructive technique has
found applications in environmental, pharmaceutical, and
other related fields. For example, the British and United
States Pharmacopoeias employ UV-Vis-based methods for
the assay of some pharmaceutical products, as well as ad-
junct method for the identification of certain active phar-
maceutical ingredients.*e technique has also been reported
to be useful for the analysis of liquid HMPs [14], and the
inherent advantages are that the methods are easy to use,
enabling laboratories to adopt and effectively implement the
protocols without any extensive training of technical staff. In
UV-Vis spectroscopy, it has been observed that spectra
obtained from complex mixtures such as liquid HMPs are
usually highly convoluted. *is is because the absorption
spectra of several components within the complex samples
are superimposed on each other. *e authors, however,
envisaged that the application of chemometric techniques to
the complex UV-Vis data can lead to useful analyses with
relevant conclusions on the quality of HMPs.

Chemometric methods involve the use of mathematical
and statistical tools to extract useful information from
complex data [15]. *ese methods have been around for a
while but have become popular lately due to the availability
of easy-to-use software and statistical packages [16, 17].
Chemometric methods are generally used for machine
learning and optimization of experiments (i.e., design of
experiment) [18, 19]. *is work will focus on the former as
the latter is beyond the scope of this paper. Machine learning
methods are usually termed as supervised or unsupervised
[20]. Unsupervised learning methods such as principal
component analysis (PCA) are arguably the most used
chemometric method [20, 21]. PCA is a dimensionality
reduction technique which reveals inherently hidden pat-
terns in data. In a PCA model, samples of the same class,
which have similar attributes, are clustered closer to each
other. *us, a confidence ellipse generated around a cluster
of samples would show high variability in the score space.
Samples deviating from the standard product will be seen
projecting further away from the center of that cluster. In the
context of our study, this can provide guidance in the de-
tection of unwholesome or expired HMPs. Supervised
learning methods, such as support vector machines (SVM),
can also be used to classify liquid HMPs in order to dis-
tinguish them from other products. *us, two different
antimalarial HMPs are expected to be classified into two
different groups. In addition, variations in the chemical
composition due to expiration of the product can also be
determined as the UV-Vis chemical fingerprint of the
product becomes altered. Such alteration, detectible with
PCA or SVM, can be employed to identify expired HMPs.

*erefore, in this study, we propose a routine for the
classification of liquid antimalarial HMPs using SVM and
UV-Vis spectroscopy. We further demonstrate the use of
PCA and SVM models to monitor the variations in liquid
HMPs and to identify expired products. *is approach has
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the potential to be expanded to the detection of adulterants
in liquid antimalarial HMPs and by extension, other HMPs.

2. Experimental

2.1. SamplePreparation. Five liquid antimalarial HMPs were
obtained from pharmacies and herbal shops in Accra and
Kumasi, Ghana. *e antimalarials used for this study were
packaged in 500mL amber colored plastic bottles. To ensure
anonymity, the samples were coded HMP1, HMP2, HMP3,
HPM4, and HMP5. *ree different batches each were ob-
tained for each sample. A fourth batch consisting of expired
HMP4 labelled HMP4X was also obtained from a herbal
shop.

A 5mL portion of each sample was pipetted into a 50mL
volumetric flask. Distilled water was added to the volumetric
flask to make up to the 50mL mark. *is yielded 5% (v/v)
concentration of the liquid herbal antimalarial in distilled
water.

2.2. Data Collection. UV-Vis spectra were collected using a
JENWAY 7315 UV-Vis spectrophotometer (Jenway, UK)
equipped with a Perkin Elmer Spectrum (Spectrum Two,
Version 10.03.09, Serial Number 94133, Waltham, USA).
*e samples were analyzed using a 1mL fused silica cuvette
and at a wavelength range of 200 to 700 nm using distilled
water as blank/reference. At least ten repeated scans were
made for each sample. *e raw data from the spectrum was
imported into MATLAB R2020b (*eMathWorks®, Natick,MA, USA). PCA and SVMmodels were generated using PLS
Toolbox 8.9 (Eigenvector Research Inc., Manson, WA,
USA).

2.3. Data Processing and Analysis. *e data was organized
into a matrix of samples in rows and wavelength in columns.
*e dataset matrix consisted of 167× 501 (sam-
ples×wavelengths). Spectral data was smoothed with a
moving average filter using a window of five. *e spectral
data was subsequently decluttered using generalized least
squares- (GLS-) based weighting strategy using an alpha
value of 0.02 [22]. Each column of the data matrix was mean
centered while the rows were normalized to 1.

*e data was further split into two main groups: 2/3 for
model training and optimization and a third for external
validation sets.*e training and validation set data consisted
of 111 and 56 samples, respectively.

Discriminant variable (DIVA) test was performed on the
training set data to identify regions of the spectra providing
information about the important regions of the data.

*e PCA model was generated with the training and
optimizing set data. In the PCA model, the variance
explained by the model by each component is represented as
a percentage. It is used to demonstrate measure of dis-
crepancy between the model and the data. *us, a higher
explained variance is desired. *e validation data were
subsequently projected into the PCA model.

*e training data was used to generate SVM classifica-
tion models for the 5 classes of samples. *e validation data

was then projected into the model to evaluate the perfor-
mance on an external validation set. *e evaluation was
based on the model’s sensitivity, specificity, and accuracy
[23]. A model’s ability to predict positive samples is true
positive rate/sensitivity (sensitivity� true positives (TP)/
number of positives (NP)). Specificity measures the model’s
ability to correctly identify negative samples, also known as
true negative rate (specificity� true negatives (TN)/number
of negatives (NN)). Accuracy measures the overall true
predicting power (accuracy� (TP +TN)/(NP+NN)). *ese
metrics are scaled from zero to 1, with 0 and 1 being the
worst and best model, respectively.

*e SVM model was further tested on the HP4X, which
are the expired HP4 samples. PCA models were also gen-
erated and evaluated with the training and validation sets,
respectively.

3. Results and Discussion

*e assessment of quality of HMPs in Ghana has largely
been based on some organoleptic and physicochemical
parameters including but not limited to color, pH, and
microbial load. However, it is necessary to develop advanced
but simple strategies that target the phytoconstituents of
HMPs in the evaluation of chemical quality. It is known that
variation in these secondary metabolites supposed to be
responsible for the biological activities of HMPs exists as a
result of factors including environment, harvesting,
manufacturing, storage, and stability. Due to the presence of
myriad of chemical compounds in polyherbal products and
the lack of adequate robust analytical methods to check
batch-to-batch consistency in levels of phytoconstituents
and identify expired or decomposed HMPs that may not
show perceptible physical changes, unscrupulous persons
could rebottle and sell substandard and unwholesome
products to the general public. *erefore, this study has
explored the application of UV-Vis spectroscopy and che-
mometric analysis in dealing with the problem. Antimalarial
HMPs were chosen as a test case due to their high demand
and over-the-counter usage.

Generally, all the UV-Vis spectra obtained from the
analyses of the liquid antimalarial HMPs showed maximum
absorbance around 230 nm, 280 nm, and 375 nm
(Figure 1(a)), which suggests the presence of compounds
with conjugated systems or chromophores and the suit-
ability of our choice of technique. *is agrees with other
findings that show the presence of chromophoric com-
pounds in plant products [12].

Due to noise in the dataset, a moving window smoothing
algorithm was implemented (Figure 1(b)), which showed
similar spectra characteristics relative to the raw spectra. In
order to identify the more informative regions of the spectra,
discriminant variable analysis was performed as previously
described [24] to generate a variable selectivity ratio (SR)
plot (Figure 2). In this analysis, an SR value less than 10 was
considered as one with low discrimination power and, thus,
was eliminated from the data. *e threshold shows the
variables which were above the set limit and reduced the
number of variables from 501 to 324. It must be emphasized
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that a fewer number of descriptors with better discrimi-
nating power are much more desirable as they lead to
simpler models [25, 26].

Next, principal component analysis was performed using
the training set data (only the 324 variables). *e results
show a PCA score plot of PC1 vs. PC2 vs. PC3 (Figure 3).*e
explained variances for PC1 and PC2 were 37.51% and
26.38%, respectively, while the third principal component
had 18.74%. *us, a total explained variance of 82.63% was
observed. It can be seen in this three-dimensional score
space that the various antimalarial HMPs are all clustered in
separate groups. A 95% confidence ellipse generated around
each cluster shows quite a few of the training set samples
straying out of the cluster. *is demonstrates that UV-Vis
spectra and PCA models can be used to distinguish various

liquid antimalarial HMPs. Subsequently, the external vali-
dation set of each HMP class was projected in the model
(Figure 4, where HMP1 are red circles, HMP2 are purple
squares, HMP3 are green diamonds, HMP4 are red pen-
tagrams, and HMP5 are blue triangles). In Figure 4, samples
used for the training and validation sets are represented by
hollow and filled markers, respectively. Here it is also ap-
parent that those samples that were not used in training the
model are also projected into the correct subgroups.

*e ability of the PCA model generated to identify
expired products was also evaluated. Expired products from
HMP4, labelled as HMP4X, were also projected into the
model as shown in Figure 4. *ese expired products were
clustered into a different score space (represented as black
triangles). *is further demonstrates that, using the UV-Vis
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Figure 1: UV-Vis spectra of liquid herbal medicinal products. (a) Raw data. (b) Spectra data smoothed with a moving average filter using a
window of 5.
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Figure 5: Continued.

International Journal of Analytical Chemistry 5



spectra and PCA, products that are expired can be easily
detected. *is is of high importance due to the fact that
liquid HMPs could go bad without showing perceptible
variations in their physical appearance and taste.

SVM classification models were generated using the 324
features obtained from the DIVA test. *e model was
generated using a radial basis function kernel with cost and
gamma values of 100 and 0.1, respectively. A venetian blind
cross validation was employed due to structure of the data

and it gave consistent results. *e model was generated with
the training set data and validated using an external vali-
dation set. *e class predicted probability plots for all the 5
products (HMP1, HMP2, HMP3, HMP4, and HMP5) are
shown in Figures 5(a)–5(e), where HMP1 are red circles,
HMP2 are purple squares, HMP3 are green diamonds,
HMP4 are red pentagrams, and HMP5 are blue triangles, red
dash lines are discrimination barrier, and training and
validation sets are represented by hollow and filled markers,
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Figure 5: SVM class predicted probability for herbal medicinal products HMP1 (a), HMP2 (b), HMP3 (c), HMP4 (d), and HMP5 (e).
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Table 1: Table of results for SVM classification for training and validation sets for all herbal products.

Product ID True positive False negative True negative False positive Sensitivity Specificity Accuracy
Training set
HMP1 24 0 87 0 1.00 1.00 1.00
HMP2 24 0 87 0 1.00 1.00 1.00
HMP3 24 0 87 0 1.00 1.00 1.00
HMP4 20 0 91 0 1.00 1.00 1.00
HMP5 19 0 92 0 1.00 1.00 1.00
Validation set
HMP1 12 0 44 0 1.00 1.00 1.00
HMP2 12 0 44 0 1.00 1.00 1.00
HMP3 12 0 44 0 1.00 1.00 1.00
HMP4 9 0 46 1 0.90 1.00 0.98
HMP5 9 0 46 1 0.90 1.00 0.98
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Figure 6: Continued.
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respectively. In the SVM of Figure 5, class predicted probability
closer to zero (black dash lines) indicated less likelihood of
samples belonging to the class being predicted. On the other
hand, a class predicted probability close to 1.00 (green dash line)
indicates that the sample may belong to the class being pre-
dicted. A class discrimination boundary is represented by a red
dashed line. *e numerical results from Figure 5 are shown in
Table 1.*ere were no false negative or false positives leading to
classification sensitivity, specificity, and accuracy of 1.00
(denoting 100%), which demonstrate the power of combination
of UV-Vis spectrum and SVM for HMPs classification. How-
ever, in the validation set, two false positiveswere identified from
HMP4 and HMP5. It is normal for a classification model to
perform better on a training set data than a validation set.

*e ability of the SVM model to detect expired products
was evaluated using the spectra of HMP4X. *e samples in
HMP4X were projected into the model to check, if indeed, the
model will predict it as HMP4 or others. It can be seen that
HMP4X samples are not predicted to be in any of the 5 HMP
groups (Figure 6).*us, the class predicted probability is below
0.5 for all five classes of HMPs. *is is because these products
have undergone some chemical changes even though there is
no perceptible physical change which has altered their UV-VIS
spectra. *is demonstrates that, using UV-Vis spectra and
SVM classification, expired herbal products can be detected.
*e study scope would be expanded to include batch-to-batch
consistency and stability of HMPs.

4. Conclusion

A simple spectroscopic method (UV-Vis spectroscopy)
together with chemometric models was successfully

developed and applied to the assessment of liquid antima-
larial HMPs.*is method demonstrates the ability of PCA to
distinguish between different HMPs. In addition, we applied
SVM models to UV-VIS spectra of liquid HMPs to classify
different antimalarials. Prediction sensitivity, specificity, and
accuracy of 1.00 (100%) were observed for training set data
for all the products. With respect to the validation set,
sensitivity, specificity, and accuracy of prediction were 1.00
in all cases for HMP1, HMP2, and HMP3. However, sen-
sitivity and accuracy for HMP4 and HMP5 were 0.90 and
0.98, respectively. *e SVM method also demonstrated its
ability to distinguish between wholesome and expired
products.

Data Availability

*e data for this project are available at lawrenceadutwum/
herbalproducts (github.com).
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