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ABSTRACT 
 
Cellulase enzyme complex is comprised of three enzymes namely exo-glucanase, endo-glucanase 
and β-glucosidase which act synergistically to deconstruct cellulosic biomass in order to produce 
fermentable sugars. The enzymes are produced naturally by the living organisms such as bacteria, 
fungi and algae. The majority of microorganisms that live in extreme environments including hot/cold 
springs, rumen stomach, deep ocean trench, acidic/alkaline pH environment, have been regarded 
as appealing producers of cellulase. Cellulases produced by microorganisms have enormous 
applications in different industries such as agriculture, food and feed production, brewing, textile, 
laundry and biofuel production. Scientists as well as industry researchers consider cellulases as a 
prospective candidate for further studies due to the intricacy of the enzyme system and massive 
industrial potential. Scientific belief in its production and further studies challenges are receiving 
greater attention these days, notably in the intent of decreasing its production cost at the industrial 
scale. In this review, future possibilities of using cellulase for various industrial applications are also 
addressed. 
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1. INTRODUCTION 
 

The massive demand for commercially 
sustainable enzymes is steadily increasing and 
leading to the need for imperishable methods. 
Enzymes are specific for bio-chemical reactions, 
also cost-effective, minimize the energy 
consumption, environmental stewardship, and 
superior efficiency. They are becoming 
increasingly popular due to these distinct 
characteristics. Various studies are done to 
optimize their production and as a result, to grow 
new products and services for various 
commercial bio-processes. Considering the 
positive aspects of specific enzymes, much 
efforts are being done to search novel biological 
enzymes [1,2]. 
 

Cellulose is the most ample carbohydrate on 
earth which is synthesized mainly by the plants in 
the process of carbon assimilation. It is 
considered to be a structural carbohydrate which 
by being part of cell wall, has mostly protective 
function. It is a linear polysaccharide composed 
of glucosyl moieties linked through β
glycosidic linkages [3]. The plant cell wall has 
mainly ligno-cellulosic biomass, where cellulose 
contents range from 35 to 50% in different plant 
species. The percent composition of 
hemicelluloses having mainly pentosyl moieties 
in their structure has been reported to be 
between 20 to 35%. The lignin contents vary 
from 5 to 30 % [4].  
 
Cellulases (sometimes also called as 
cellulosome) are considered to be a multi
enzyme complex and comprised of more than 

Fig.1. Biochemical structure of the cellulose unit. A. 3D structure of cellulose B. Structural 
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glycosidic linkages [3]. The plant cell wall has 

cellulosic biomass, where cellulose 
0% in different plant 

species. The percent composition of 
hemicelluloses having mainly pentosyl moieties 
in their structure has been reported to be 
between 20 to 35%. The lignin contents vary 

Cellulases (sometimes also called as 
losome) are considered to be a multi-

enzyme complex and comprised of more than 

one enzyme that act synergistically to hydrolyze 
cellulose. The cellulosome is comprised of at 
least three enzymes namely, endo
glucanase (also known as carboxymethyl 
cellulase; EC 3.2.1.4), exo-1, 4-
(also referred as cellobiohydrolase (CBH); EC 
3.2.1.91) and β-glucosidase (EC 3.2.1.21), 
respectively [5]. The endo-1,4-
randomly cleaves β-1,4 glycosidic linkages in 
cellulose producing oligosaccharides of glusosyl 
moieties linked by β-1,4 linkages. The exo
β-D-glucanase, also commonly called as 
exoglucanase splits β-1,4 glycosidic linkage 
alternately generating β-cellobiose as the 
product; and β-glucosidase acts directly on β
cellobiose (disaccharide) and releases β
glucose [6,7]. Cellulase enzymes are 
enzymes and being important from both an 
industrial and biotechnological standpoint, have 
much demand in the global market.
seem to be the most  prominent
industrial enzymes because of their wide 
biochemical diversity and the ease
they can be produced on a large scale [1,2]. 
Cellulase occurs in nature and primarily secreted 
by the microbes like moulds, fungi and bacteria 
[8]. 
 
2. CHEMICAL STRUCTURE OF 

CELLULOSE  
 
As indicated in Fig.1, each repeat unit comprises of 
three hydroxyl groups. These hydroxyl groups and 
their capacity to make hydrogen bonds among 
cellulose chains regulate the physical properties of 
cellulose [9]. 

 

 
Biochemical structure of the cellulose unit. A. 3D structure of cellulose B. Structural 
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3. CELLULOLYTIC ENZYMES 
 
Cellulases are inducible enzymes that hydrolyze 
β-1,4 linkages in cellulose chains, and are 
synthesized by a number of microorganisms 
throughout their growth on cellulose enriched 
substances [10,11]. The fungal parasites which 
attack the plants, secrete cellulases to invade the 
plant tissue. The organisms involved in the 
senescence of dead plant tissues also secrete 
this enzyme to break the plant cell wall. 
Cellulases in their structure are consisted of 
modules having folded, functionally and 
structurally distinct domains [12]. Most cellulases 
have one catalytic domain (CD) and also a 
 

 
Fig. 2. A schematic degradation of cellulose by cellulase [14,15]
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cellulose chain hydrolysis and supports cellulase 
binding to cellulose, respectively [13]. 
schematic degradation of cellulose b
has been indicated in Fig. 2. It is proposed that 
cellulase binds on the microfibrils of cellulose 
and loosened them to convert cellulose 
microfibrils in the amorphous form. Thereafter, 
endo- and exo-cellulases are accessible to 
cellulose polymer and fragment it into smaller 
chained oligomeric molecules. Thereafter, these 
oligomers get further fragmented into cellobiose. 
The cellobiose moieties get converted into 
glucosyl moieties by the β-glucosidase enzyme 
[14]. 
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Table 1. Bacterial cellulase enzyme systems [16] 
 

Enzyme  EC. number   Reaction  Other Names  
Endo 1,4 β-D-glucanglucano-
hydrolase  

EC. 3.2.1.4  Oligosaccharides of different lengths are formed by 
cutting randomly at internal amorphous sites of 
cellulose.  

Endoglucanase;  
Endo 1,4-β-glucanase;  
Carboxymethyl cellulase;  
β-1,4 endoglucan  
hydrolase, Endocellulase  

Exoglucanase or 
1,4-β-D-glucan 
cellobiohydrolases 
(Cellobiohydrolases) 

EC.3.2.1.91  In cellulose and cellotetraose, hydrolyzes 1,4--D 
glucosidic linkages, and produces cellobiose as from 
non-reducing end of a chain. 

Exoglucanase;  
Exocellobiohydrolase; 
1, 4-β-cellobiohydrolase  

 Exoglucanases or 1,4-β-D-
oligoglucan  
cellobiohydrolases  

EC. 3.2.1.74  Cellobiose is produced from cellooligosaccharides or 
p-nitrophenyl—D-cellobioside. 

Cellodextrinases  

β - Glucosidases or β-D-
glucoside gluco-hydrolases  

EC. 3.2.1.21  Hydrolysis of D-glucosyl residues from the non-
reducing end of the chain leading to the release of D-
glucose. 

Gentiobiase; Cellobiase;  
Amygdalase  

Cellobiose:  
orthophosphate α-D-glucosyl 
transferase  

EC. 2.3.1.20  It converts cellobiose into D-glucose-1-phosphate 
and D-glucose in the presence of Pi (phosphorolytic 
cleavage of cellobiose). 

Cellobiose  
phosphorylase  

1,4-β-D-oligoglucan 
orthophosphate α-D-glucosyl 
transferase  

EC. 2.3.1.49  It causes the cleavage of glucosyl moieties from 
cellodextrins as glucose-1-phosphate in the presence 
of Pi.  

Cellodextrin  
phosphorylase  

Cellobiose 2-epimerase  EC. 5.1.3.11  It hydrolyses the cellobiose into D-glucosyl-D-
mannose.  

Cellobiose 2- epimerase  

Complete Cellulase  
system  

 -  Substantial hydrolysis of crystalline cellulose is 
catalysed by this enzyme. 

Total cellulase  
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4. CLASSIFICATION OF CELLULASES  
 
The cellulases are classified on their catalytic 
action. Microorganisms produce extracellular 
cellulases which are either free or associated to 
hydrolyze insoluble cellulose and metabolize it. 
The biochemical study of cellulase systems from 
various microbes during last three decades has 
been thoroughly reviewed [16]. 
 
Degradation of cellulose has been shown to be a 
complex process that requires the synergistic 
intervention of several glycoside hydrolases (GH) 
families [12]. The GH belong to a superfamily of 
an inclusive group of plant cell wall degrading 
enzymes. The GH act on glycosidic bonds of 
carbohydrate or between carbohydrates and 
non-carbohydrate moieties, and catalyze many 
different reactions [17]. Based on the mechanism 
of catalysis, cellulase systems have been 
categorized and shown in Table 1. 
 
5. MICROBIAL SOURCES FOR 

CELLULOLYTIC ENZYMES 
 
The abundance of microbial cellulolytic enzymes 
seems to be everywhere and distributed over the 
world's most varied and extreme environments 
on the planet. A huge diversity has been found 
among cellulase producing microorganisms 
along with their extreme habitat such as the 
rumen of ruminants, a marine or saltwater 
environment, soil, insects and intestines of 
termites [18]. The key producers of cellulolytic 
microorganisms are fungi, bacteria, and 
actinomycetes. There are large number of 
reports on various types of microbes which 
cause hydrolysis of cellulose, [8,19]. Some of the 
recently discovered bacterial and fungal species 
for cellulase production are mentioned in Tables 
2 and 3, respectively. Many reports are in the 
literature on detection and functional 
characterisation of microbial enzymes inhabiting 
extreme environmental habitats [20].  
 

5.1 Rumen Microflora 
  
The ruminant diet is mainly composed of 
cellulose and it plays a crucial role in rumen 
fermentation [21]. The breakdown of 
lignocellulosic feed in ruminants is feasible due 
to the enzymes secreted by the rumen's 
microbial population. These enzymes allow 
consumption of more lignocellulosic feed, and 
therefore, animals have the access to the 
nutrients and energy stored in the ligno-cellulosic 
feed [22]. The rumen microbiota is considered to 

degrade ten thousand million tonnes of cellulosic 
materials worldwide [23]. The key producers of 
cellulolytic enzymes are bacteria and fungi [24]. 
The metagenomic researchers got attention to 
learn more about microbial ecology and 
enzymatic diversity exploring rumen microbiome 
since it is a hub of cellulolytic microbes. Several 
metagenomic studies have found a variety of 
CAZymes (carbohydrate active enzymes) in 
various ruminants like Holstein–Friesian cross 
bred steers [25,26], buffalo [27], Saudi sheep 
[28], camel [29] and goat [18]. In rumen 
microbiota, bacteria (both Gram-negative and 
Gram-positive species) are predominantly 
present in the rumen environment. The most 
common ruminal cellulolytic bacteria are 
Ruminococcus flavefaciens, Fibrobacter 
succinogenes and Ruminococcus albus, which 
produce enzymes effective for degrading 
crystalline cellulose [30]. Besides, other bacteria 
like Clostridium lochheadii, Clostridium 
longisporum, Eubacterium ruminantium, 
Butyrivibrio fibrosolvens, Eubacterium 
cellulosolvens and Prevotella ruminicola are also 
found in rumen capable to lyse the fibers [31]. 
Anaerobic fungi found in Herbivores' rumens, 
produce hydrolytic enzymes which degrade plant 
fiber [32]. Fungal biomass accounts for 8–20% of 
the total rumen microbial biomass [33]. Some 
examples of rumen fungi are Neocallinastix 
frontalis MCH3, Piromyces (Piromonas) 
communis FL, and Caecomyces 
(Sphaeromonas) communis FG10 [34]. 
 
5.2 Microbes in guts of Insects and 

Termites  
 
Woody plant components are consumed by a 
variety of invertebrates. Termites, wood borers 
and beetles are examples of pests. These pests 
usually have a diversified and ecologically 
abundant microbiome consisting of bacteria, 
archaea, and protists [35]. A cellulase secreting 
Bacillus sp. BMP01 has been isolated from the 
gut of the termite, Cryptotermes brevis [36]. 
Similarly, Bacillus, Paenibacillus, and Flexibacter 
groups capable of secreting cellulase have been 
dominantly found in termites, Zootermopsis 
angusticollis and Nasutitermes lujae [37]. The 
presence of endo ß-1, 4 glucanase in the 
digestive system of the wood-eating termite, 
Coptotermes formosanus Shiraki has been 
described by Nakashima et al. [38]. Besides, 
many other cellulolytic bacteria including 
Acinetobacter, Pseudomonas, Streptomyces, 
Bacillus, Clostridium, Ochrobactrum, 
Paenibacillus, Brevibacillus, Cellulomonas, 
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Citrobacter, Eubacterium, Serratia, Paenibacillus, 
Klebsiella, Brevibacillus, Eubacterium, Serratia, 
Citrobacter have been shown to be present in the 
guts of termites [36]. 
 
Besides, cellulolytic yeasts have also been found 
in the guts of termites [39]. Other cellulolytic 
yeast strain (ZM1, ZM2 and ZM3) are found in 
Zootermopsis nevadensis which belongs to the 
genus Sporothrix [37].  
 
5.3 Soil Microbial Diversity 
 
Soil is often considered to be a significant source 
of cellulose, which is found in the state of 
decaying plant biomass in both top soil layer and 
beneath the top soil layer [40,41]. The 
degradation of this cellulosic material is known to 
be aided by cellulolytic microorganisms including 
fungi, bacteria and actinomycetes. The 
abundance and functions of cellulolytic 
microorganisms are largely determined by the 
soil composition. For instance, it has been 
revealed that the abundance of cellulolytic 
bacteria is higher in forest soil than other types of 
soils like composted, garden, agricultural, arid 
and dry soils [42]. 
 
The fungi namely Trichoderma, Penicillium, 
Aspergillus, Fusarium and Colletotrichum are of 
industrial importance due to magnificent 
production of cellulase [43,44]. The Trichoderma 
reesei is the most employed species out of all 
Trichoderma species for different types of 
industrially important cellulases [45]. In addition, 
Aspergillus and Penicillium are also significant 
cellulase producers and robustly utilised in 
biomass degradation and biofuel manufacturing 
[46]. 
 
It has been well documented that among the soil 
cellulolytic bacteria, Bacillus sp. (B. licheniformis, 
B. subtilis and B. cereus), Serratia and 
Pseudomonas sp., are important which 
significantly utilize cellulose present in various 
forest and agricultural wastes, and transform it 
into high-value products [47]. Another significant 
class of soil microorganisms is Actinobacteria, 
known for producing a substantial amount of 
cellulase. There are many species of 
Cellulomonas such as C. terrae, C. iranensis, C. 
pachnodae, C. fimi, C. aurantiaca and C. uda, 
and of Streptomyces such as S. 
olivochromogenes, S. lividans and S. 
flavogriseus, which are reported to secrete 
cellulases [48-56]. 
 

5.4 Extremophiles 
 
Extremophiles are the microorganisms that live in 
a diverse variety of extreme climatic 
environments including temperature, pressure 
and extreme radiations, as well as geochemical 
inordinates like salinity, acidic or alkaline pH, 
ionic strength and oxygen species [57]. The 
majority of researches have been conducted on 
extremophiles such as thermophiles, 
alkalophiles, acidophiles, halophiles and 
sychrophiles. The enzymes isolated from 
extremophiles are shown to be active and stable 
under adverse conditions. Consequently, 
extremeophiles derived enzymes are effective 
biocatalysts for a variety of commercial 
bioprocesses including metabolising           
sugars, polysaccharides, and plant           
biomass under a variety of environmental 
conditions [18].  
 

5.5 Thermophiles 
 
Thermophiles are the microbes which grow 
optimally at higher temperatures ranging from 60 
to 108

o
C [58]. Beguin et al. [59] were the pioneer 

in studying cellulase coding gene in the 
thermophilic bacteria, Clostridium thermocellum. 
The cellulase secreted by the thermophilic 
Clostridium species is important for fuels like n-
butanol and isobutanol [60]. The Bacillus is 
another notable genus that has been associated 
with thermophilic cellulases. In the detergent 
industries, thermophilic Bacillus has been 
considered to be important which produces exo- 
and endocellulases with nearly 100% efficiency 
at 60°C [61]. Thermophilic bacteria such as B. 
licheniformis and B. coagulans; Geobacillus 
thermoleovorans, and Paenibacillus are found to 
have cellulolytic activity at temperatures of 50oC 
and higher [62-65]. There are reports indicating 
that hyperthermophilic bacteria such as Aquifex 
aeolicus, are able to grow at 95°C and they have 
thermostable endoglucanase having optimum 
temperature between 80 and 90°C. The 
Thermotoga sp. secretes cellulase at 100 –106 
°C growth temperature [66- 68]. 
 
In addition to bacteria, several thermophilic fungi 
like Sporotrichum pulverulentum, Aspergillus (A. 
versicolor, A. terreus, A. wentii), Myceliophthora 
thermophila, Chaetomium thermophilum and 
Humicola insolens are also reported to secrete 
thermophilic cellulases having optimum 
temperature in the range of 60 to 65°C 
temperature [69,70]. 
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5.6 Psychrophiles/cryophiles 
 
Psychrophiles are cold-loving extremophilic 
microbes or archaea which generally grow in the 
temperature range of 20

o
C to 0

o
C with an ideal 

growth temperature of 15
o
C [71]. Cold-active 

cellulases are also being studied for their 
capability to breakdown of cellulosic materials. 
The psychrophiles, Pseudoalteromonas (P. 
haloplanktis) and Flavobacterium sp. AUG42 are 
documented to secrete cellulases having good 
activity at low temperatures [72,73]. Recently, a 
novel fungal species, Aureobasidium paleasum 
sp. nov. is shown to have a promising     
possibility for straw degradation. There are 
reports that psychrotrophic fungi exhibited strong 
cellulolytic activities at lower tempera-           
tures,   with good thermal tolerance from 5 to 50 
°C [73]. 
 
5.7 Acidophiles  
 
Cellulases from acidophiles have a high 
economic value. Certain acidophilic bacteria 
have been identified to secrete acid-tolerant 
cellulases. Besides, some acidophilic bacteria 
are also reported to be thermoacidophiles [75-
77]. Kusube et al. [78] reported a cellulase from a 
thermoacidophile bacteria, Alicyclobacillus 
cellulosilyticusas having maximum activity at pH 
4.8 and 55

o
C temperature. A thermostable and 

salt tolerant cellulase has been reported from a 
marine Bacillus sp. having optimal activity at pH 
6.5 and 60

o
C temperature [79]. They also 

reported a cellulase secreted by the fungus, 
Paenibacillus sp. which had good activity at pH 
range 4.0 to 4.5 and at a temperature, 20°C. 
There are reports that certain thermoacidophilic 
fungi secrete cellulase in acidic pH range and 
comparatively higher temperature range. For 
instance, Aspergillus fumigatus isolated from 
sugarcane bagasse, has significant cellulase 
activity at pH 2.0 and 65°C [80,81]. Similarly, a 
thermoacidophilic cellulase has been                    
reported from Pleurotus ostreatus exhibiting 
maximum activity at pH 4.0 and 55°C. A 
cellulase from white-rot fungus, Inonotus 
obliquus also has good catalytic activity at a 
temperature range, 40 to 60°C and pH 3.0 to 4.5. 
[82,83].  
 

5.8 Alkaliphiles 
 

Cellulases having activity in alkaline condition 
are employed in detergent industries [84]. 
Hakamada et al. [85] reported thermostable 
endo-1,4-β-glucanase having good activity in 

wide pH range of 6 to 10 from alkaliphilic 
Bacilllus agaradhaerens and B. pseudofirmus.  
 

Several Bacillus sp. cellulases may exhibit both 
pH and thermostable characteristics [86]. Aikawa 
et al. [87] reported a cellulase having activity at 
pH 9.0 from an alkaliphilic bacteria, Clostridium 
alkalicellum. Thapa et al. [18] reported cellulolytic 
activity in Herbivorax saccincola A7 strain having 
optimum pH 9.0 and optimum temperature, 55oC. 
The fungi, Aspergillus and Penicillium, have also 
been exploited to get alkaline cellulase from their 
spores [88]. Dutta et al. [89] showed production 
of an alkaline and thermostable endoglucanase 
having good activity in the wide pH range of 5.5 
to 8.0 from an alkali tolerant Penicillium citrinum 
(MTCC 6489). 
  
5.9 Marine Biome 
 

Marine microorganisms grow in extremes of 
physico-chemical conditions. As a result, marine 
bio-resources must be studied not just for their 
prominent function in aquatic food webs and 
biogeochemical cycles, but as a source of 
several biochemical catalysts [90]. The enzymes 
secreted by the marine microbial sources are 
thought to be more powerful and exhibit a wider 
range of biochemical characteristics. However, 
Balabanova et al. [91] reported that marine 
microbes grown on cellulosic biomass production 
are similar to their terrestrial equivalents. Dos 
Santos et al. [92] reported cellulase production 
from marine microbe, Bacillus sp. SR22 isolated 
from Cabo Branco coral reefs. Garsoux et al. [93] 
studied cellulase production by 
Pseudoaltermonas haloplanktis isolated from 
Antarctica vicinity. Zeng et al. [94] reported 
cellulase from Pseudoaltermonas sp. DY3 
isolated from the sea bottom. Trivedi et al. [90] 
showed that marine fungus, Cladosporium 
sphaerospermum from Sediment of Arabian sea 
is a significant cellulase producer. 
 

6. CELLULASE PRODUCTION 
 

Cellulase has much higher industrial applicability, 
therefore its large-scale production at low 
production cost and its efficient downstream 
processing are important parameters. Many 
microbes secrete this enzyme in the surrounding 
culture medium, and therefore, are for cellulase 
production [135]. Two most used methods for 
production of microbial cellulase are solid 
substrate fermentation (SSF) and submerged 
fermentation (SmF). The submerged 
fermentation has been used for production of 
enzymes at the commercial level due to ease of 



 
 
 
 

Maravi and Kumar; BJI, 25(3): 36-71, 2021; Article no.BJI.72466 
 
 

 
43 

 

Table 2. Some recently studied cellulase secreting bacterial species. 
 

Microorganism Source of isolation Property  Industrial Applications Reference 
Bacillus albus SCB9 Simlipal biosphere reserve Biomass saccharification bioethanol production   [95] 
Bacillus licheniformis A5 and Bacillus 
subtilis B2 

NS  Degradation of grains Liquor industry [96] 

Aneurinibacillus aneurinilyticus BKT-9 Urban fresh water lake Biomass saccharification Food processing and biofuels   [97] 
B. methylotrophicus1EJ7  Rotten wood Bio-pretreatment of cellulose Biofuels  [98] 
 Bacillus licheniformis Bi1  Soil Biomass saccharification Biofuels  [99] 
Paenibacillus sp. C1 Sugar industry waste High substrate specificity  Various industrial applications  [100] 
 Streptomyces glaucescensSK91Land 
Streptomyces rocheiSK78L 

Litchi orchard  Biomass saccharification Biofuels  [101] 

Bacillus zhangzhouensis MCCC 
1A08372 

 Romanian Hypersaline 
Lake 

Tolerance to high salt 
concentrations 

 Various biotechnological 
applications 

 [102] 

Streptomyces thermoalkaliphilus sp. 
nov. 
 4-2-13T 

tropical rain forest soil  Alkaline thermophilic cellulase NS  [103] 

Bacillus Amyloliqu 
efaciens AK9 

Hot water spring Conversion of lignocellulosic 
biomass 

Biofuels [104] 

Geobacillus sp. HTA426 Hot water spring Thermostable Biofuels [105] 
Streptomyces 
argenteolus AE58P 

Dept. of Agri.Sci., divi. of Microbiol of 
the Univ.of Naples Federico II 

Conversion of lignocellulosic 
biomass 

Biofuels and biochemical 
production  

[106] 

Pseudomonas fluorescens Rice paddy field soil Pretreatment and biomass 
saccharification 

Lignocellulosic biorefineries [107] 

Bacillus sp. K1 Rotten wood NS Biorefining [108] 
Bacillus vallismortisRG-07 Soil Thermostable-alkalophilic Biofuels [109] 
Paenibacillus 
terrae ME27-1 

Natural reserves of subtropical 
region of china 

Diversity of cellulose-
degrading bacteria 

 
NS 

[110] 

Bacillus subtilis BY-2 Tibetan pig's intestine NS  Animal food [111] 
Pseudomonas fulorescens Soil stability between neutral to 

alkaline pH 
Detergent, food, pharmaceutical  [112] 

Pseudomonas aeruginosa Extreme ecological habitats Soil and 
water) 

Thermostable     Biofuels [113] 

Bacillus subtilis Industrial waste Thermostable Biofuels [114] 
NS* Not Specified 
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Table 3. Some recently studied cellulase secreting fungal species 
              

Microorganism Source of isolation  Property Industrial Applications Reference 
Aspergillus oryzaeRIB40 Water Hyacinth 

 
NS Agriculture [115] 

Fusarium oxysporum VSTPDK Soil Stable at alkaline pH Paper and pulp [116] 
Pestalotiopsis microspora TKBRR Thalakona forest soil Degradation of casein Biotechnological applications. [117] 
Aspergillus niger MK543209 Egyptian soils NS Bioenergy [118] 
Aspergillus sp. (CBMAI 1926) Soil NS Biotechnological 

application 
[119] 

Aspergillus niger- MR2 Municipal solid wastes Organic municipal solid waste 
degradation 

Waste Management [120] 

Trichoderma viride Municipal solid wastes Organic municipal solid waste 
degradation. 

Waste Management [121] 

Periconia epilithographicola sp. 
nov. and Coniochaeta 
cipronana sp. 

Ancient lithographs NS Textile laundry detergents, 
biofuels, bioremediation 

[122] 

Aspergillus nigerIS2 Fruit litter NS Waste management [123] 
Emericellavariecolor NS3 Orange peel waste NS Waste management [124] 
Cochliobolus sps. Plastic dumped soil NS Waste management [125] 
Aspergillus fumigatus AA001 Rice 

Straw 
Thermostable and stable at alkaline 
pH 

 
Biofuel 

 
[126] 

Chaetomium dolichotrichum Deteriorated 
papers 

NS Waste Management [127] 

Aspergillus foetidus TISTR 3159 Soil NS Food processing and others [128] 
Mucor racemosus Fresenius 
1850 

Swabbed from the 
historical books. 

NS Waste management [129] 

Aspergillus flavus BS1 Woodyards NS Bioethanol [130] 
Aspergillus fumigatus ABK9 Agriculture Waste NS Pulp and Paper [131] 
Aspergillus niger N402 Agriculture Waste Higher hydrolysis efficiency Biological pre-treatment [132] 
Aspergillus terreus Rice Straw NS Biofuels [133] 
Aspergillus fumigatus P40M2 Soybean bran Thermostable and stable at acidic pH Biomass conversion [134] 

NS* Not Specified 
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operation and controlled physical parameters. It 
employs liquid components in the culture 
medium. Generally, broth and/ or molasses are 
used in the culture medium [136]. Solid 
substances serve as sources of minerals, 
carbon, nitrogen, and growth factors, and are 
capable of absorbing water to make it available 
for microbes with native habitat and growth 
requirements. The solid substances generally 
used in SSF are various agricultural wastes and 
paper pulp [137]. Cellulase production is an 
inducible process that is profoundly influenced by 
physical parameters like incubation time, 
temperature, inoculum size and pH. Similarly, 
requirements of nutrition (carbon, nitrogen and 
mineral sources) must be regulated and 
optimized to boost the effectiveness of cellulase 
production [138]. Optimum fermentation 
parameters for cellulase secretion optimized for 
different microorganisms are shown in Tables 4 
and 5. 
 

6.1 Production of Cellulase by 
Statistical Modeling 

 

A statistical design of experiments is a factorial 
cum statistical model used to achieve fast and 
accurate results. A two levels factorial model is 
much more informational and easier to determine 
different variables [138]. Response surface 
methodology (RSM) is the most commonly used 
designs among the various Design of 
experiments (DoE) and has been often used for 
the design, production, enhancement and 
optimization of different processes and for the 
development of new products and the upgrade of 
current ones [139]. The RSM is a series of 
mathematical and statistical techniques focused 
on the fit of a polynomial equation to the 
experimental data to explain the data. It has 
been practically observed that predictions of 
various parameters implied in a process are 
important to enhance the enzyme production 
[140]. A statistical design of experiments could 
be implemented at any stage of an optimization 
technique, and for screening experiments to 
check for the optimum conditions for targeting 
response(s). Recently, statistically analysed 
findings have been analysed by anticipated 
studies that are better documented than standard 
OFAT methods [142]. It is very important to 
choose parameters or variables since it is a 
crucial step in all approaches and their levels, 
that have to be studied. The RSM employs 
statistical models such as Box-behnken design 
(BBD), Central composite design (CCD), 
Plackett-Burman design, Face centered design 

(FCCD) etc. and these models are provided by 
different statistical packages software namely 
Minitab, Design-Expert, Stat-ease etc. Most 
commonly, CCD and BBD are employed for 
optimization of nutritional requirements (culture 
medium) of microbes and process parameters for 
cellulase production [142]. The statistical 
software used for optimization of cellulase 
production are mentioned in Table 6. 
 

7. ENZYME CHARACTERIZATION 
 

The, characterization of cellulases is obligatory to 
understand the physiochemistry in cellulose 
hydrolysis. The studies on the enzyme are done 
to elucidate catalytic, structural and kinetic 
properties. The enzyme stability at various 
temperatures ranging from low to higher 
temperature, enzyme activity- pH variability 
relationship, effect of unresolvable cellulosic 
substrate on activity and product inhibition are 
important to study. Many laboratories are 
engaged in the study of cellulases [ 84, 143-152]. 
The standard protein purification techniques such 
as ammonium sulfate fractionation, ion exchange 
chromatography, chromatofocusing, hydrophobic 
interaction chromatography and gel filtration 
chromatography have been frequently. [153-
155]. The cellulase from fungal strains namely 
Thermomonospora curvata [156], Trichoderma 
viride [157], Fusarium oxysporum [158], 
Aspergillus tubingensis [159] and 
Thermomonospora fusca [160], has been purified 
and characterized. Fungi have been studied 
comparatively more for cellulase production, 
isolation and characterization compared to 
bacterial sources [161]. Although, cellulase has 
been analysed from bacterial sources but their 
number is lesser compared to their abundance in 
nature. The bacterial cellulase has been studied 
and purified from Bacillus subtilis [162,163] 
Paenibacillus sp. [164], Bacillus licheniformis 
[165], Caldibacillus cellulovorans [166], 
Thermotoga maritima [167]. Thermobifida fusca 
[168], Acidothermus cellulolyticus [169] and 
Rhodothermus marinus [170]. The comparative 
characteristics of purified cellulases from    
various microbial sources are summarized in 
Table 7. 
 

8. INDUSTRIAL APPLICATIONS OF 
CELLULASES 

 

Cellulases have become an objective for various 
researches since last few decades because 
cellulase has a huge scope in diverse 
applications. Cellulase has applications in             
textile desizing, monogastric feed production for 
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Table 4. Optimum fermentation parameters for cellulase secretion in different fungi 
 

Microorganism Substrate Moisture 
(%) 

pH Temp 
(°C) 

Inoculum 
Level 

Particle 
Size 
(mm) 

Incubation Time 
(h) 

Reference 

Fusarium 
oxysporum VSTPDK 

 Rice Straw - 8.5 45 - - 192  [171] 

Aspergillus 
fumigatus JCM 10253 

Ragi husk  - 2-4 50  - 1.33  168-192  [172] 

Aspergillus 
tubingenesis 
MN239975 

Sorghum 
straw 

70.5 5.5  
27.5 

7.5% - 168  [173] 

Aspergillus 
niger CCUG33991 

Wheat bran  70 - 33 2 × 10
7
 - 

4 × 107 
30 and 50 51  [174] 

Myceliophthoratherm
ophila BJTLRMDU3 

Rice straw 1:7 (w/v) 7.0 45  12 × 10
6
 

/ml 
- 96  [175] 

Aspergillus niger 
NFCCI 4113 

 
Wheat bran 

 
70 

 
7.0 

 
30 

_  
250–1400 µm 

 
144 

 
 [176] 

 Bacillus subtilis 
PS-5CM-UM3 

Citrus sinensis 
bagasse 

60 ±5  7.0 37 40% - 72  [177] 

Trichoderma sp. 
RCK65 

Prosopis 
juliflora  

20% 4.5 30 -  72  [178] 

Aspergillus 
nigerCICC 41258 

Rapeseed 
cake 

60 - 34 1 × 10
7\ml

 40 mesh 72   [179] 
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Table 5. Optimum fermentation parameters for cellulase secretion in different bacteria 
 

Microorganism Carbon Nitrogen pH Temperature 
(°C) 

Inoculum 
Level 

Agitation 
Speed 
(rpm) 

Incubation 
Time (h) 

Reference 

 Bacillus subtilis CD001 Galactose Sodium 
Nitrate 

7.0 45 10%v/v 120 72  [180] 

B. licheniformis 
BCLLNF-01 

CMC  _ _ 40 5.5% 500 96  [181] 

B. licheniformisBi1 CMC Peptone  6.5 40 1.8% 150 72  [182] 
 Penicillium oxalicumJG  Wheat 

bran 
 soy bean  

Initial 
 1.5 

40 108 
spores/10
0 mL 

200 Within 
168 

[183] 

Streptomyces sp. NAA2  Parthenium 
hysteropho
rus&CMC  

_ 6.5 40 5 × 107  
spores/ml 

120-150 192 [184] 

Bacillus cereus  poplar waste 
biomass 

Yeast 
extract 
Peptone 

9.0 37 2% 120 24  [185] 

Bacillus subtilis MU S1 CMC Yeast 
extract 

7.0 40 _ 150 24  [186] 

Bacillus subtilis K-18 Potato peel 
powder 

Yeast 
extract 

5.0 50 2% 120 24  [187] 

 Bacillus licheniformis 
2D55 

Sugarcane 
bagasse 
and rice 
husk 

Peptone 3.5 60 3% 180 18  [188] 

Bacillus stratosphericus 
N12. 

Lactose  _ 8.0 30 10% 200 72  [189] 
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Table 6. Statistical software used for optimization of cellulase production 
 

Microorganism  Design No. of Variables Experiment Runs Software Yield Improvement Reference 
B. Subtilis CD001 Box-Behnken 9 46 Design expert 11 3  [180] 
Trichoderma  
Stromatricum AM7 

(ANN-GA) 4 28 Matlab R 2016a 31.58  [190] 

Bacillus licheniformis Central composite 4 36 Design  
expert 8.0.1 

25  [182] 

Bacillus subtilis (ANN-GA) 
CCRD 

3 
3 

20 
20 

Matlab R2018a 
Stat-Ease 

16.09 
15.73 

 [191] 

Bacillus licheniformis Hi-08 Box-Behnken 4 29 Design expert 
11.0 

1.8  [192] 

Bacillus subtilis S1 Placket Burman 3 15 Design expert 
triall version 7 

1.43  [193] 

Bacillus licheniformi 
NCIM 5556 

FCCCD 4 30 Design  
expert 8 

3.0  [138] 

Aspergillus niger CCD 4 20 Design  
expert  

-  [194] 

Penicillium 
oxalicum IODBF-5 

Box-Behnken 3 29 Design expert 
7.0 

1.87  [195] 

 

Table 7. Biochemical properties of some of the recently discovered cellulase from various sources 
 

Organism/ Source Temp 
(°C) 

pH MW 
(kDa) 

Metal Ion 
(Divalent) 

Km, Vmax Inhibitors Substrate Specifity References 
Natural Synthetic  

Caulobacter 
crescentus 

40 5.5-
6.0 

73 Mn, Sn, Co 0.66 mg/mL 
2.41 U/mg/ min. 

Hg
+2

, Ag
+2

 - CMC  [196] 

Bacterial sp.  40 6.5 74.5  Ca2+, 
Zn

2+
 

 

400 mM, 
18, 33 µM/min 

 Mg2+   ONPG [197] 

Trichoderma 
longibrachiatumKM274
866 

45 4.8 67  Ca2+, 
Mg2+, 
Fe2+ 

0.121 mg/ml, 
 0 .421 
µmmol/min 

K
+ 

- CMC  [198] 

 
Aspergillus flavus 

 
60 

 
10 

 
55  

 
- 

3.02 mg mL
−1

 
37.87 mol min−1 
mg

−1
 

EDTA  
- 

 
CMC 

 [199] 
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Organism/ Source Temp 
(°C) 

pH MW 
(kDa) 

Metal Ion 
(Divalent) 

Km, Vmax Inhibitors Substrate Specifity References 
Natural Synthetic  

 
Pseudomonas sp. 

 
50 

 
7.0 

 
50 

 
Fe2+, Mn2+ 

 
 
- 

 
SDS, Tide, 
surf Excel 

 
- 

 
CMC 

 
[200] 

Schizophyllum 
commune NAIMCC
-F-03379 

25 5 ~ 60 - 0.0909 mg/mL 
45.45 μmol/ 
min/mg 

-  - CMC  [201] 

 
 
Paenibacillus sp. 

 
 
40 

 
 
.70 

 
 
67 

 
 - 

 
- 

 
- 

 -  
CMC 

 
 [202] 

 
Bacillus pantothenticus 

 
60 

 
4.5 

 
51.48 

 
- 

1.167 mg/ml, 
0.833 µg/ml/min 

 
 NaCl2, 
NiCl2 

 -  
CMC 

 [203] 
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ruminants and detergent formulations. Besides, 
its application in biorefinery is much remarkable. 
Much work is focused on cellulases involved 
saccharification of biomass in last couple of 
decades. However, researchers are looking 
forward for affordable commercial production 
method for cellulase to overcome various cost 
and technical constraints [204,19]. The plausible 
industrial applications of cellulases are described 
below: 
 
8.1 Cellulases in Agriculture 
 
Enzyme cocktails with cellulases, hemicellulases, 
pectinases have possible uses in farming to 
improve crop growth and control diseases of 
plants [205, 206]. Cellulases and associated 
enzymes from several fungi have been known to 
deform the outer coat of plant pathogens in plant 
disease control [205]. The β-glucanases have 
been isolated from various fungi like Trichoderma 
sp., Penicillium sp., and Chaetomium sp. There 
are evidences that β-glucanases have important 
vital roles in agriculture through the enablement 
of increased germination of seeds, rapid growth 
and flowering of plants, strengthened the root 
system and enhanced yields of crops [207, 208]. 
The cellulases are also used to boost the 
consistency of the soil. The inclusion of straw is 
conventionally an effective approach to enhance 
the quality of soil and reduce the reliance on 
mineral fertilizers [209, 210]. 
 
Cellulase has also been employed in olive oil 
extraction to produce top notch quality of olive 
oil. In industries, enzyme preparations used have 
specific combination of enzymes. For example, 
Olivex is a mixture of pectinase, cellulase and 
hemicellulase from Aspergillus aculeatus. This is 
used in maceration process to enhance the 
antioxidants in mechanically extracted olive oil 
and to avoid the process of rancidity. Ultimately, 
it enhances the extraction of the oil from olives 
[211,212]. Similarly, Olivex has also been found 
useful in carotenoid extraction. The enzymes 
present in it disrupt the outer coat of sweet 
potato, carrot and orange peel, and 
subsequently, carotenoids present in the plastids 
and cell fluids are released and help to stand 
their natural state. These pigments still bind 
strongly to proteins. Oxidation of pigments is 
inhibited by a bonded structure resulting in colour 
stability. Furthermore, carotene is enriched in 
provitamin A. The function of provitamin A has 
been shown in the oxidation of lipids. Besides, 
these carotenes have also been shown to exhibit 
anticarcinogenic properties [213, 214]. 

8.2 Cellulases in Animal Feed Industries 
 
Cellulase and hemicellulases are found to        
exhibit uses in the feed market. These enzymes 
are capable to increase the feeding value and 
also the animals’ productivity [215]. The cellulase 
and xylanase enzymes are also employed in the 
pre-treatment of agricultural ensilage and                   
feed grain. This pre-treatment enhances                   
the nourishing property of the animal feed              
[212]. 
 
In the feed grain, there are some antinutritional 
factors. For example, dietary fibers have many 
indigestible substances called as antinutritional. 
These enzymes can degrade antinutritional feed 
components resulting in increase of the 
nutritional value. On feeding treated feed grains 
to animals, there is secretion of certain 
supplementary digestive enzymes which 
enhance the digestion, and subsequently, there 
is strengthening of absorbtion process. 
Ultimately, there is improvement in animal health 
and performance [75, 216, 217]. 
 
Cellulases and especially thermophilic cellulases 
are also important in cecal fermentation 
processes to avoid viral and microbial 
contaminants on heat treatments of animal feed 
stock. As a result, there is increase in propionic 
acid production. It leads in formation of 
bacteriostatic material which may result in 
reduction of the pathogenic bacteria colonization 
[205, 212, 213]. 
 

8.3 Cellulases in Food Processing 
Industries 

 
Cellulases also have a diverse array of 
advancement in food technology. These enhance 
extraction, clarification, and stabilisation 
processes of juices from various plant products 
like vegetables and fruits. The cellulases do have 
a significant application as macerating enzyme 
complex. The enzymatic maceration process 
improves fruits extraction and clarification 
process resulting in enhancement of fruits juice 
yield [218, 219]. These macerating enzymes 
boost texture and cloud stability, and also reduce 
the viscosity of purees and nectars from tropical 
fruits such as mangoes, papayas, peaches, 
plums, pear and apricot [19, 205, 219, 220]. 
There are certain fruits and vegetables which 
have specific characteristic aroma, texture and 
flavor. However, in many cases, intense bitter 
taste is there. These specific characteristics may 
be enhanced by reducing bitter taste by the use 
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of enzymes like β-glucosidases and pectinases 
[221, 222]. 
 

8.4 Cellulases in Wine and Brewery 
Industries 

 
The procedure to produce alcoholic drinks, 
including beers and wine involves fermentation 
where microbial glucanases are used 
prominently [19, 211, 218, 220]. 
 
Yeast and certain enzymes play important role to 
produce high-quality products during 
fermentation. In oenological procedures, mainly 
two methods namely cold prefermentative and 
maceration are in practice. The inclusion of 
macerating enzymes responsible for increasing 
the secretion of grape polyphenols, and 
sustaining the color, facilitate the attempts to 
ameliorate yeast strains. Influence of 
fermentation of yeast in the protein reservoir of 
grape juice has been in use for decades before 
and after alcoholic fermentation [224,178]. 
 
Wine makers and customers both are a bit 
skeptical about using exogenous enzymes 
already characterized by them. During wine-
making, the use of macerating enzymes makes 
improved skin maceration and excellent 
extraction of colour, which is especially 
necessary in red wine production. Besides, it 
enhances clarity, filtration, and also the wine's 
overall consistency and stability [211]. The outer 
coat of grape berries releases carbohydrate 
polymer fraction in wines [225].  
 
Galante et al. [211] studied wine making from 
three different varieties of white grapes using a 
mixture cellulase, xylanase and pectinase in a 
commercial preparation, Cytolase 219. They 
found up to 35% enhancement in the 
solubilization of first wine must, and also up to 
80% enhancement in the removal of particles by 
filtration, much reduction in the pressing time and 
must viscosity, resulting in up to 40% saving of 
energy during cooling of fermenter, and 
enhancement in wine stability.  
 

8.5 Cellulases in Biofuel and Bioethanol 
Industries 

 
Biofuels are the fuels derived from biomass. 
Unlike fossil fuels, biofuels being renewable 
energy, are carbon neutral and emit much lesser 
greenhouse gases. From the point of cleaner 
environment, biofuels have become the need of 

the day and therefore, are being accepted by the 
society [226]. 
 
Based on the feedstock, biofuels have been 
categorized into different generation biofuels. At 
present, most researches are being carried out 
on second and third generation biofuels [226]. 
 
First generation biofuels are produced from 
starchy crop plants like corn. However, after the 
concept of biofuel from edible starchy cash crop, 
there was debate globally since there are so 
many deaths due to hunger especially in poor 
and developing countries.  
 
Second generation biofuels are the biofuels 
derived from ligno-cellulosic biomass. It is 
considered that lignocellulosic biomass is 
comparatively lesser expensive and is readily 
available. For example, there is plenty of 
sugarcane straw and bagasse and other plant 
based waste which predominantly consisted of 
cellulose (30% to 50%), hemicellulose (15% to 
35%), and lignin (10-20%) [228]. There is debate 
on second generation biofuels also since people 
started to use more space for growing specific 
plants important for biofuels. With increasing 
population, there is already shortage of space for 
accomodations. 
 
Third generation biofuels are derived mainly from 
algal biomass. Algae are grown in aquatic 
spheres. Currently, they are subjected to 
comprehensive study to enhance the metabolic 
production of fuels. Much emphasis is on the 
processes of separation of bio-oil to remove 
components that are not fuel and further reduce 
the costs of production [229]. Microalgae are 
often seen as potential candidates for fuels due 
to their high photo-assimmilation rate. There are 
many methods for producing renewable energy 
using algal biomass. The biochemical 
conversion, thermochemical conversion and 
chemical reactions including specific combustion 
are regarded as necessary for biomass 
processing in order to produce high-value 
chemicals such as bioethanol [230]. 
 
For production of fourth generation biofuels, 
genetically modified (GM) algae are normally 
used. For fourth generation biofuels, open-pond 
model is an affordable option for large-scale 
microalgae cultivation. However, issues                
related to health and environmental threats and 
related severe restrictions must not be             
ignored.  
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Although extensive research on genetic 
engineering and other advancements aimed at 
increasing productivity of algae strain, have been 
undertaken, only a few of them deal with the 
regulatory restrictions placed on the exploitation 
and processing of GM algae. Besides, there are 
some legislative limitations in fourth generation 
biofuels production [231]. 
 
To increase the yield for second generation 
bioethanol, a crucial step is pre-treatment of 
ligno-cellulosic biomass, and subsequently 
enzymatic saccharification for release of 
fermentable sugar [232]. 
 
Enzymatic hydrolysis is a costly step, and 
therefore, more research must be carried out in 
order to get cheaper enzymes, improving the 
efficiency of hydrolysis and increasing the 
production of fermentable sugar which leads to 
productivity improvements [233, 234]. 
 
The degradation of lignocellulosic materials into 
goods of useful and better worth requires multi-
step processes [235,236]. These mechanisms 
involve pretreatment and hydrolysis of the readily 
formed polymers molecules that are 
metabolizable (e.g., hexose and pentose 
sugars). In addition to bioconversion to simple 
sugars and/or production of chemical products, 
separation of the products and their purification is 
of interest. 
 
At present, enzymatic hydrolysis is more 
expensive and also slow process compared to 
acid or alkaline hydrolysis. Currently, it is 
performed under moderate conditions (pH 4 to 6 
and and temperature, 45-50

o
C) which                       

doesn't have problems of corrosion [235,                   
237]. 
 
The certain modifications in proteins and guided 
evolution are significant techniques which could 
promote production of even more thermophilic 
cellulases [238]. Recycling and methods related 
to reuse of enzymes are of interest to decrease 
enzymatic hydrolysis expenses [239-242]. In 
addition, there are reports that certain 
compounds or imitate cellulose have a very 
strong affinity for lignin and are able to inhibit the 
adsorption of cellulases to lignin [243-246]. 
Immobilized enzymes can be recovered when 
recycling from the production process. There are 
recycling methods which are mostly tested on a 
lab scale [241, 247]. Consequently, it is always 
important to scale up the methods, the 
reproducibility and viability.  

In biomass hydrolysis, the major issue is 
obstinate behavior of cellulose to complete 
degradation. New biocatalytic procedures are 
needed to boost enzymatic hydrolysis 
overcoming this problem [248]. The total 
cellulose enzymatic degradation into sugar 
monomers is being considered theoretically by 
integrating enzymes of various families, such as 
glycosidases, hydrolases, and oxidases. By 
merging these enzymes, a modest improvement 
in hydrolysis efficiency has been achieved. 
However, kinetic ambiguity is there due to 
cellulose crystallinity and the inhibition of 
enzymes [248]. 
 

8.6 Textile Industry 
 
The role of enzymes in multiple procedures in the 
textile industry is increasing on an enormous 
scale. Because of their biodegradable nature, 
non-toxicity and environmental amiability, they 
have been favored in textiles [249]. 
 
Cellulases are the most productive in the wet 
processing of textiles, notably finishing cellulose 
dependent textiles [206, 250]. Almost all of the 
substances used in fabric manufacturing are 
dependent on cellulosic fibers which tend to 
shape down (short fibers coming from the 
surface) and lint (loose down stuck to the 
surface). Traditional methods of extracting 
protruding fibers use a highly harmful burning 
procedure or chemical methods, significantly 
toxic and after just a few washes, the fibers 
revert to just the surface creating a fluff [251]. 
Biopolishing is a biological procedure wherein 
cellulases function upon the surface of the tissue, 
eliminating any fluff or lint protruding from such a 
surface. This provides clean surface to 
enhancing the texture, smoothness, appearance, 
hydrophilic properties, brightness and intensity of 
colors. It also provides full resistance to fiber 
while reducing the propensity to form lint [252].  
 
After cellulases work upon this cotton fabric 
during the biostoning process, and cut off the tiny 
fiber ends on the yarn surface, results in easing 
the dye, which is extracted by physical abrasion 
in the cycle of cleaning. 
 
The benefits provided in replacing pumice stones 
with a cellulose-based procedure include lesser 
fiber disruption, improved efficiency of the 
appliances, least labor-intensive and 
environment friendly [19, 211, 220, 253]. 
Although biopolishing normally takes place 
during the process, the wet processing phases 



 
 
 
 

Maravi and Kumar; BJI, 25(3): 36-71, 2021; Article no.BJI.72466 
 
 

 
53 

 

involve desizing, scouring, bleaching, dyeing and 
finishing. Acidified cellulase enhances the 
properties of softness and water absorption of 
fibers. The propensity for pill forming is strongly 
diminished and provides a smoother surface and 
less fuzz [254]. The cellulase- endoglucanase 
enriched formulations are the most ideal for 
biopolishing to improve the look, feel and color of 
the fabric without obligation of any chemical fiber 
coating. Cellulase intervention reduces short 
fibers and surface fuzziness, and provides a 
smooth and shiny look as well as enhances the 
clarity of the color, hydrophilicity, absorption of 
moisture and the eco- acceptable process [205]. 
Cellulases’ synergistic function and mechanical 
action causes the de-pilling/cleaning and/or 
ageing of the product which occurs concurrently 
or successively [235]. 
 

8.7 Cellulases in Paper Manufacturing 
Industry 

 
Substantially, over the past decade attention 
seeking the application of cellulase throughout 
has arisen in the paper manufacturing industry.  
 
Nowadays, 90% paper pulp is made up of wood. 
The recycling of one ton of newspapers and 
magazines saves the use of one ton of wood. 
Similarly, recycling of one ton of printing or 
copying paper saves nearly two tons of wood, 
[256]. The paper manufacturing industry 
significantly uses the lignocellulose-containing 
sources. Lignocellulosic material has 
constituents of lignin, hemicellulose and 
cellulose, that could be broken down into smaller 
components and used as feedstocks for their 
efforts towards valorization. So many of these 
substances are found in streams including waste 
materials that are underused, along with black 
liquor, pulp, sludge and log, and wastewater. 
Bacterial fermentation procedures have the 
magnificent capacity for upgrading lignocellulosic 
biomass, and the value-added chemicals found 
in these streams. A sustainable and 
economically viable conversion by bacteria 
enables the valorization of these streams, which 
helps and extend in pulp and paper industry 
applications [257].  
 
The paper is manufactured in a three-stage 
process that includes pulping, bleaching and the 
processing or finishing of paper or paper making 
[258]. The forms of wood species which are used 
to produce pulp are softwoods like fir, spruce and 
pine, and hardwoods like eucalyptus, aspen, and 
ash. Along with global rise in requirements, also 

environmental protection concerns, apart from 
forests, other substances like rice straw and 
waste paper are currently used for pulp 
manufacturing [258,259]. 
 
Pulping includes use of chemical, mechanical 
and /or biological processes to break woody 
substance bonds and detach cellulose fibers 
from lignite fibers [260]. Mechanical pulping 
involves wood refining, slicing, mechanical 
shearing and disintegration of different fibers 
[261]. 
 
A chemical pulping is used to solubilize lignin. It 
facilitates separation of fiber [261]. The complete 
chemical pulping technique (Kraft pulping 
process) involves use of sodium hydroxide and 
sodium sulfide at a temperature of 155 to 180°C 
and at a pH over 12, with 800 kPa steam 
pressure as the key cooking conditions to break 
down wood chips into pulp [262]. 
 
The biological pulping procedure involves 
organic and non-degradable fiber raw materials 
in natural conditions. Biological pulping requires 
wood chips processing and also requires 
biological nutrients (primarily white-rot fungi) to 
loosen and eliminate lignin [263, 264]. 
 
Bio-bleaching using enzymes is an important 
replacement to avoid environmental pollution. 
The elimination of intransigent lignin is carried 
out from the pulp, a process known as bleaching 
used to make the paper brighter and whiter 
paper [256]. Many paper mills globally use 
chlorine dioxide (ClO2) as a bleaching agent for 
the manufacturing of top-quality white paper. 
However, there are more environmentally 
sustainable bleaching options available to pulp 
mills. The substitutes of ClO2 are prolonged 
cooking, oxygen, hydrogen peroxide or 
delignification based on ozone. However, 
adoption of these alternatives wher requires 
moderations to the procedure and is regarded a 
higher cost proposal on a broad scale. Xylanases 
and laccases are environmentally-sound for the 
bleaching purposes [256]. 
 
Deinking is a crucial process where cellulase is 
suitably used in paper recycling, and that implies 
the separation of printing ink from the previously 
used paper to achieve brighter pulp. Deinking 
procedure involves selecting the factors such as 
process of printing and type of ink. 
Electrophotography printing has 5 phases 
namely imaging, writing, toner transfer (printing), 
fixing or fusing, and cleaning (conditioning) [265]. 
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In electrophotography printing, the ink (toner) 
used comprises thermoplastic polymers, in 
addition to carbon black. This process of ink 
removal is laborious and also not viable 
economically. Although the standard deinking 
methods need expensive wastewater treatment 
since hazards, and other chemical agents which 
are not environment friendly are present in it 
[266]. On the contrary, deinking by enzymatic 
methods are novel methods to mitigate this 
problem. This method allows pollutant free 
discharging since enzymatic mechanism 
forwards ink separation from the paper fibers 
[267].  
 
Recently, upcoming future possibilities for new 
pulping procedures are prompted by the demand 
for new bio-based products to substitute the 
fossil-derived products while still lowering pulping 
costs [268]. 
 

8.8 Cellulase in Detergent Industries 
 
Cellulase is important in the detergent industries 
with other enzymes like lipase, protease and 
amylase. Nowadays, during manufacture of 
detergents, these enzymes are normally mixed in 
the liquid detergent and detergent powder to 
replace the toxic compounds such as 
phosphates and silicates to lower the energy 
demand and cost effectiveness of formulation of 
the detergents. Cellulolytic microbes are 
secreting extracellular enzymes for commercial 
purposes. Because of its applicability, cellulase is 
a demanding enzyme in the detergent industries 
also [269]. 
 
Enzyme cocktails having lipase, proteases, 
amylase and cellulase are applied to detergents 
to improve washing performance. Detergents 
containing cellulase can stabilize the brightness 
and color of the fabrics, helping to reduce the 
formation of fluff and pills in woollen fabrics. In 
cotton and cotton blends, the enzyme can 
enhance brightness of color by modifying the 
cellulose fibrils. It also assists in the absorption of 
soil and stains by specifically attacking the 
cellulose fibrils internally washing fibrils and 
withdrawing dirt of inter-fibrils in which other 
components in the detergent also play role [270]. 
 
The presence of cold-active cellulase to 
detergent improves the detergent's washing 
quality, reducing water usage and resulting in 
substantial energy savings [271]. Cold active 
enzymes are isolated from the microorganisms at 
different geographical areas varying from 

extreme temperatures (hot to cold). These are 
studied for compatibility tests as detergent 
additives. Enzymes having activity under cold 
conditions with high catalytic activity are present 
in psychrophiles which thrive in cold 
environments, and their resilience under harsh 
conditions makes them ideal eco-friendly and 
cost-effective detergent additives.  
 
Modern genomics and proteomics approaches 
created an opportunity for a more thorough view 
of the efficiency of cold-active enzymes for 
detergent additives. Molecular techniques are 
important  to unravel the riddle regarding these 
enzymes' alkaline stability and chemical 
compatibility with oxidising agents are important 
[75, 272, 273]. 
 

8.9 Cellulase in Waste Management 
 
There is plenty of waste produced from forests, 
farm lands, and agro-industries. These wastes 
have maximum amount of cellulose which is 
discarded or underused, resulting pollution in the 
atmosphere [274,275]. Researchers have shown 
that characterization of cellulase producing 
bacteria and their genome functional analyses 
help to improve waste management [276]. All the 
wastes are now wisely used to manufacture 
useful goods such as enzymes, carbohydrates, 
biofuels, chemicals, low-cost energy fermentation 
streams, enhanced cattle diets, and human 
nutrition dietary supplements [204, 277,278]. 
 

8.10 Cellulase Market Scenario 
 

As per worldwide cellulase (CAS 9012-54-8) 
market Analysis, the animal feed industry 
accounts for about 30% of the overall cellulase 
market, whereas food and beverages, and textile 
industries retain about 26% and 14%, 
respectively [279].  
 

Use of such cellulase/xylanase enzymes in 
biofuel industries is important to rise at a faster 
rate. In the next few years, the economy will 
grow by around 7 to 10%. In 2019, the worldwide 
cellulase enzyme market was valued at around 
US$ 1500 million, and it has been speculated to 
grow to US$ 2320 million in the year 2024 [18]. 
By 2024, such biotechnological and 
pharmaceutically important enzymes are 
predicted to grow at the fastest pace. North 
America is expected to dominate the 
cellulase/xylanase enzyme market in terms of 
regional spread owing to the drastic 
advancement in manufacturing technology and 
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its use in various industries [280]. The 
cellulase/xylanase enzyme industries are quite 
likely to be projected in the Asia Pacific region, 
with China and India expected to get the largest 
demand of these enzymes in the upcoming 
future. According to a systematic quantitative and 
qualitative evaluation, nearly three-fourth of the 
enzyme industry is distributed in this market. 
Some of the cellulase industries include 
Worthington Biochemical Corporation, Sigma-
Aldrich Co. LLC, Amano enzyme USA, 
BIOCATALYSIS LTD., and DONG Energy, 
GmbH, Prozmix LLC and MP Biomedicals LLC 
[281, 282]. 
 

9. FUTURE RECOMMENDATIONS AND 
CONCLUSION 

 

Production of thermostable enzymes is important 
to improve cellulosic bioconversions. New 
approaches are intended to produce 
commercially important products with better-
quality especially in terms of eco-friendly and 
green products. Besides, these approaches must 
cause lesser loss of the substrate during the 
bioconversion of cellulosic biomass. The search 
for a stable and consistent naturally occurring 
microbial cellulolytic enzymes in diverse range of 
environments, might be a factor which may help 
for implementing effective use, especially for the 
widely accessible cellulosic substrates in the bio-
refineries. Several intrinsic catalytic properties of 
presently available cellulolytic enzymes, like 
inefficiency, nonstability and end-product 
inhibition, impede their large-scale use in 
industries. A basic understanding of functional 
genomics and proteomics techniques for 
analysing microbial diversity from various 
habitats and ecosystems might help to explore 
cellulolytic enzymes. To understand the 
cellulolytic enzyme production from different 
microbial sources, synthetic and system biology, 
along with omics methods and bioinformatics 
algorithms can assist to certain extent. The 
possibility of enhanced enzyme characteristics 
with a higher efficiency and physical stability 
potentially may influence the cellulolytic enzyme 
industries. For exploring the novel cellulolytic 
enzymes with improved functional efficiencies, 
state of the art technologies are needed. The use 
of a diverse set of molecular and genetic 
techniques is important, and genetic engineering 
is one among them. However, it is not the only 
one for strain improvement by mutagenesis, and 
the structure guided recombination approach 
(SGRA), Genome-scale modeling, multi-plex 
CRISPR/CAS9 in association with the synthetic 

expression system (SES), fast expectation-
maximization microbiological source tracking 
(FEAST), statistical optimization, solid-state 
fermentation, and consolidated bio-       
processing concepts might help researchers       
to get better knowledge of the potential microbes 
to secrete cellulolytic enzymes and how to 
produce them efficiently in future. These 
strategies may be useful in resolving     
challenges of efficacy of cellulose degrading 
enzymes currently in the market. There are 
several approaches to be researched, as well    
as innovative  methods to be found in order        
to turn the most ubiquitous bioresource in           
to the value-added green products that            
may be used for a variety of purposes in 
industries. 
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